CHAP 3:배열, 구조체, 포인터.

Slides:



Advertisements
Similar presentations
YES C 제 1 장 C 언어의 개요 1/34 제 1 장 C 언어의 개요 문봉근. YES C 제 1 장 C 언어의 개요 2/34 제 1 장 C 언어의 개요 1.1 프로그램과 C 언어의 특징 1.2 C 언어의 프로그램 구성 1.3 비주얼 C++ 통합 환경 들어가기.
Advertisements

스택 스택 추상자료형 스택 스택의 구현 스택의 응용 한빛미디어(주).
C++ Tutorial 1 서강대학교 데이터베이스 연구실.
슬라이드 1~21까지는 각자 복습! 슬라이드 22부터는 수업시간에 복습
Power C++ 제6장 포인터와 문자열.
배열, 포인터 컴퓨터시뮬레이션학과 2016년 봄학기 담당교수 : 이형원 E304호,
C++ Espresso 제3장 배열과 포인터.
C++ Espresso 제3장 배열과 포인터.
CHAP 1:자료구조와 알고리즘.
쉽게 풀어쓴 C언어 Express 제11장 포인터 C Express.
CHAP 1:자료구조와 알고리즘 C로 쉽게 풀어쓴 자료구조 생능출판사 2005.
제 8 장  파서 생성기 YACC 사용하기.
C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2011
C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005
제 2 장 배열과 스트링.
제2장 배열과구조.
시스템 생명 주기(System Life Cycle)(1/2)
CHAP 6:큐 C로 쉽게 풀어쓴 자료구조 생능출판사 2005.
제 6 장 데이터 타입 6.1 데이터 타입 및 타입 정보 6.2 타입의 용도 6.3 타입 구성자 6.4 사례 연구
8. 객체와 클래스 (기본).
Internet Computing KUT Youn-Hee Han
C++ 프로그래밍 년 2학기 전자정보공학대학 컴퓨터공학부.
C 11장. 포인터의 활용 #include <stdio.h> int main(void) { int num;
쉽게 풀어쓴 C언어 Express 제17장 동적 메모리와 연결 리스트 C Express.
Chapter 03 배열, 구조체, 포인터.
시스템 생명 주기(System Life Cycle)(1/2)
C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005
자료 구조: Chapter 3 배열(1) 순천향대학교 컴퓨터공학과 하 상 호.
자료 구조: Chapter 3 배열(1) 순천향대학교 컴퓨터공학과 하 상 호.
구조체 struct 구조체와 함수 구조체의 배열, sizeof 연산자 열거형 enum 형 정의 typedef
쉽게 풀어쓴 C언어 Express 제4장 변수와 자료형 C Express.
자료 구조: Chapter 3 (2)구조체, 포인터
컴퓨터의 기초 제 4강 - 표준 입출력, 함수의 기초 2006년 4월 10일.
쉽게 풀어쓴 C언어 Express 제16장 파일 입출력 C Express Slide 1 (of 23)
스택(stack) SANGJI University Kwangman Ko
제 3 장. 배열과 구조체 및 포인터.
C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2011
head data link data link data link NULL a b c
자료 구조: Chapter 3 (2)구조체, 포인터
CHAP 6:큐 C로 쉽게 풀어쓴 자료구조 생능출판사 2005.
8장 포인터.
쉽게 풀어쓴 C언어 Express 제17장 동적메모리와 연결리스트 C Express Slide 1 (of 13)
10장 메모리 관리.
쉽게 풀어쓴 C언어 Express 제17장 동적 메모리와 연결 리스트 C Express.
쉽게 풀어쓴 C언어 Express 제17장 동적메모리와 연결리스트 C Express.
25장. 메모리 관리와 동적 할당.
동적메모리와 연결리스트 컴퓨터시뮬레이션학과 2016년 봄학기 담당교수 : 이형원 E304호,
[INA240] Data Structures and Practice
3장. 포인터, 배열, 구조체 포인터, 배열, 구조체 학습목표 기본적 데이터 타입
Dynamic Memory and Linked List
Chapter 2:: Array, Structure, and Pointer
CHAP 1:자료구조와 알고리즘 C로 쉽게 풀어쓴 자료구조 생능출판사 Slide 1 (of 28)
쉽게 풀어쓴 C언어 Express 제10장 배열 C Express.
6장 배열.
Department of Computer Engineering
자료구조: CHAP 4 리스트 (1) 순천향대학교 컴퓨터공학과 하 상 호.
제 3 장 상수와 변수
adopted from KNK C Programming : A Modern Approach
C언어 프로그래밍의 이해 Ch13. 선행처리기와 주석문.
컴퓨터의 기초 제 2강 - 변수와 자료형 , 연산자 2006년 3월 27일.
다음 주 과제 3장 읽어오기 숙제 해서 제출하기. 자료구조와 알고리즘, 순환 E304호,
Chapter 04 리스트.
Chap. 1 Data Structure & Algorithms
3장. 변수와 연산자. 3장. 변수와 연산자 3-1 연산자, 덧셈 연산자 연산자란 무엇인가? 연산을 요구할 때 사용되는 기호 ex : +, -, *, / 3-1 연산자, 덧셈 연산자 연산자란 무엇인가? 연산을 요구할 때 사용되는 기호 ex : +, -, *, /
CHAP 8:우선순위큐.
CHAP 1:자료구조와 알고리즘.
토론을 위한 질문 배열의 이름에는 무엇이 저장되는가? C언어에서 배열 추상데이터의 store는 어떻게 구현 되는가?
컴퓨터 프로그래밍 기초 - 11th : 파일 입출력 및 구조체 -
제5장 디버깅과 추적 문봉근.
C.
Presentation transcript:

CHAP 3:배열, 구조체, 포인터

배열이란? 같은 형의 변수를 여러 개 만드는 경우에 사용 반복 코드 등에서 배열을 사용하면 효율적인 프로그래밍이 가능 int A0, A1, A2, A3, …,A9;  int A[10]; 반복 코드 등에서 배열을 사용하면 효율적인 프로그래밍이 가능 예) 최대값을 구하는 프로그램: 만약 배열이 없었다면? 1 2 3 4 5 6 7 8 9 tmp=score[0]; for(i=1;i<n;i++){ if( score[i] > tmp ) tmp = score[i]; }

배열 ADT 배열: <인덱스, 요소> 쌍의 집합 인덱스가 주어지면 해당되는 요소가 대응되는 구조 배열 ADT 객체: <인덱스, 요소> 쌍의 집합 연산:   ▪ create(n) ::= n개의 요소를 가진 배열의 생성.  ▪ retrieve(A, i) ::= 배열 A의 i번째 요소 반환.  ▪ store(A, i, item) ::= 배열 A의 i번째 위치에 item 저장. 요소 인덱스

1차원 배열 int A[6]; A[0] A[1] A[2] A[3] A[4] A[5] base+5*sizeof(int)

2차원 배열 int A[3][4]; A[0][0] A[0][1] A[0][0] A[0][1] A[0][2] A[0][3] A[0][2] A[1][0] A[1][1] A[1][2] A[1][3] A[0][3] A[2][0] A[2][1] A[2][2] A[2][3] A[1][0] … A[2][3] A[i][j] 주소 계산: base + i*sizeof(int)*4 + j*sizeof(int) 실제 메모리안에서의 위치

배열의 응용: 다항식 다항식의 일반적인 형태 프로그램에서 다항식을 처리하려면 다항식을 위한 자료구조가 필요-> 어떤 자료구조를 사용해야 다항식의 덧셈, 뺄셈, 곱셈, 나눗셈 연산을 할 때 편리하고 효율적일까? 배열을 사용한 방법 다항식의 모든 항의 계수를 배열에 저장

다항식 표현 방법 10 6 3 모든 차수에 대한 계수값을 배열로 저장 하나의 다항식을 하나의 배열로 표현 coef 1 2 4 6 3 1 2 4 5 7 8 9 #define MAX_DEGREE 101 typedef struct { int degree; float coef[MAX_DEGREE]; } polynomial; polynomial a = { 5, {10, 0, 0, 0, 6, 3} };

다항식 표현 방법(계속) 장점: 다항식의 각종 연산이 간단해짐 단점: 대부분의 항의 계수가 0이면 공간의 낭비가 심함. 예) 다항식의 덧셈 연산 단점: 대부분의 항의 계수가 0이면 공간의 낭비가 심함. #include <stdio.h> #define MAX(a,b) (((a)>(b))?(a):(b)) #define MAX_DEGREE 101 typedef struct { // 다항식 구조체 타입 선언 int degree; // 다항식의 차수 float coef[MAX_DEGREE]; // 다항식의 계수 } polynomial;

다항식 표현 방법(계속) // C = A+B 여기서 A와 B는 다항식이다. polynomial poly_add(polynomial A, polynomial B) { polynomial C; // 결과 다항식 int Apos=0, Bpos=0, Cpos=0; // 배열 인덱스 변수 int degree_a=A.degree; int degree_b=B.degree; C.degree = MAX(A.degree, B.degree); // 결과 다항식 차수 while( Apos<=A.degree && Bpos<=B.degree ){ if( degree_a > degree_b ){ // A항 > B항 C.coef[Cpos++]= A.coef[Apos++]; degree_a--; }

다항식 표현 방법(계속) else if( degree_a == degree_b ){ // A항 == B항 C.coef[Cpos++]=A.coef[Apos++]+B.coef[Bpos++]; degree_a--; degree_b--; } else { // B항 > A항 C.coef[Cpos++]= B.coef[Bpos++]; degree_b--; return C; main() { polynomial a = { 5, {3, 6, 0, 0, 0, 10} }; polynomial b = { 4, {7, 0, 5, 0, 1} }; polynomial c; c = poly_add(a,b);

희소행렬 배열을 이용하여 행렬(matrix)를 표현하는 2가지 방법 희소행렬: 대부분의 항들이 0인 배열 (1) 2차원 배열을 이용하여 배열의 전체 요소를 저장하는 방법 (2) 0이 아닌 요소들만 저장하는 방법 희소행렬: 대부분의 항들이 0인 배열

희소행렬 표현방법 #1 2차원 배열을 이용하여 배열의 전체 요소를 저장하는 방법 A= B= 장점: 행렬의 연산들을 간단하게 구현할 수 있다. 단점: 대부분의 항들이 0인 희소 행렬의 경우 많은 메모리 공간 낭비 2 1 5 4 6 3 9 8 7 7 8 9 5 1 2 3 A= B=

희소 행렬 #1 #include <stdio.h> #define ROWS 3 #define COLS 3 // 희소 행렬 덧셈 함수 void sparse_matrix_add1(int A[ROWS][COLS], int B[ROWS][COLS], int C[ROWS][COLS]) // C=A+B { int r,c; for(r=0;r<ROWS;r++) for(c=0;c<COLS;c++) C[r][c] = A[r][c] + B[r][c]; }

희소 행렬 #1 main() { int array1[ROWS][COLS] = { { 2,3,0 }, { 8,9,1 }, { 7,0,5 } }; int array2[ROWS][COLS] = { { 1,0,0 }, { 1,0,0 }, { 1,0,0 } }; int array3[ROWS][COLS]; sparse_matrix_add1(array1,array2,array3); }

희소행렬 표현방법 #2 0이 아닌 요소들만 저장하는 방법 A= B= 장점: 희소 행렬의 경우, 메모리 공간의 절약 단점: 각종 행렬 연산들의 구현이 복잡해진다. 행 열 값 행 열 값 2 3 7 1 2 1 2 1 1 3 1 1 9 1 2 1 2 2 1 8 2 1 5 8 1 2 1 2 A= B= 3 1 1 9 3 3 6 1 2 1 2 4 1 2 1 4 3 1 5 1 2 1 2 5 2 7 5 4 5 1 6 2 2 5 6 5 2 2

희소 행렬 #2 #define ROWS 3 #define COLS 3 #define MAX_TERMS 10 typedef struct { int row; int col; int value; } element; typedef struct SparseMatrix { element data[MAX_TERMS]; int rows; // 행의 개수 int cols; // 열의 개수 int terms; // 항의 개수 } SparseMatrix;

희소 행렬 #2 // 희소 행렬 덧셈 함수 // c = a + b SparseMatrix sparse_matrix_add2(SparseMatrix a, SparseMatrix b) { SparseMatrix c; int ca=0, cb=0, cc=0; // 각 행렬의 data 배열의 인덱스로 사용 // 행렬 a와 행렬 b의 크기가 같은지를 확인 if( a.rows != b.rows || a.cols != b.cols ){ fprintf(stderr,"희소행렬 크기에러\n"); exit(1); } c.rows = a.rows; c.cols = a.cols; c.terms = 0; Stderr: Standard error stream The standard error stream is the default destination for error messages and other diagnostic warnings. Like stdout, it is usually also directed to the output device of the standard console (generally, the screen).

희소 행렬 #2 while( ca < a.terms && cb < b.terms ){ // 각 행렬에서 현재 항(element)의 상대적인 순서를 계산 int inda = a.data[ca].row * a.cols + a.data[ca].col; int indb = b.data[cb].row * b.cols + b.data[cb].col; if( inda < indb) { // a 행렬 항이 앞에 있으면 c.data[cc++] = a.data[ca++]; } else if( inda == indb ){ // a와 b가 같은 위치 c.data[cc].row = a.data[ca].row; c.data[cc].col = a.data[ca].col; c.data[cc++].value = a.data[ca++].value + b.data[cb++].value; else // b 행렬 항이 앞에 있음 c.data[cc++] = b.data[cb++];

희소 행렬 #2 // 행렬 a와 b에 남아 있는 항들을 행렬 c로 옮긴다. 2개의 for문 중 적어도 하나는 실행이 안됨 for(; ca < a.terms; ca++) c.data[cc++] = a.data[ca++]; for(; cb < b.terms; cb++) c.data[cc++] = b.data[cb++]; c.terms = cc; return c; } main() { SparseMatrix m1 = { {{ 1,1,5 },{ 2,2,9 }}, 3,3,2 }; SparseMatrix m2 = { {{ 0,0,5 },{ 2,2,9 }}, 3,3,2 }; SparseMatrix m3; m3 = sparse_matrix_add2(m1, m2);

구조체 구조체(structure): 타입이 다른 데이터들을 하나로 묶는 방법 배열(array): 타입이 같은 데이터들을 하나로 묶는 방법 구조체 배열 필드 1 char carray[100]; struct example { char cfield; int ifield; float ffield; double dfield; }; struct example s1;

구조체 생성예 구조체의 선언과 구조체 변수의 생성 typedef을 이용한 구조체의 선언과 구조체 변수의 생성 struct person { // person은 구조체명(구조체 식별자 또는 구조체 tag) char name[10]; // 문자배열로 된 이름 int age; // 나이를 나타내는 정수값 float height; // 키를 나타내는 실수값 }; struct person a; // 구조체 변수 선언 typedef을 이용한 구조체의 선언과 구조체 변수의 생성 typedef struct person { char name[10]; // 문자배열로 된 이름 int age; // 나이를 나타내는 정수값 float height; // 키를 나타내는 실수값 } person; // person은 구조체명인 동시에 새로운 타입이름 person a; // person 타입의 변수 선언

구조체의 대입과 비교 연산 구조체 변수의 대입: 가능 구조체 변수끼리의 비교: 불가능 typedef struct person { char name[10]; // 문자배열로 된 이름 int age; // 나이를 나타내는 정수값 float height; // 키를 나타내는 실수값 } person; main() { person a, b; b = a; // 가능 } 구조체 변수끼리의 비교: 불가능 main() { if( a > b ) printf("a가 b보다 나이가 많음"); // 불가능 }

자체참조 구조체 자체 참조 구조체(self-referential structure): 필드중에 자기 자신을 가리키는 포인터가 한 개 이상 존재하는 구조체 연결 리스트나 트리에 많이 등장 typedef struct ListNode { char data[10]; struct ListNode *link; } ListNode;

포인터(pointer) 포인터: 다른 변수의 주소를 가지고 있는 변수 포인터가 가리키는 변수의 값 변경: * 연산자 사용 26 ‘A’ 변수 a 주소 포인터 p 포인터: 다른 변수의 주소를 가지고 있는 변수 char a='A'; char *p; p = &a; 포인터가 가리키는 변수의 값 변경: * 연산자 사용 * : 역참조(dereferencing) 연산자 26 ‘B’ 변수 a 주소 포인터 p *p= 'B';

포인터와 관련된 연산자 & 연산자: 변수의 주소를 추출 * 연산자: 포인터가 가리키는 변수(의 값)를 추출 26 &a *p int a; // 정수 변수 선언 int *p; // 정수 포인터 선언 int **pp; // 정수 포인터의 포인터 선언 p = &a; // 변수 a와 포인터 p를 연결 pp = &p; // 포인터 p와 포인터의 포인터 pp를 연결

다양한 포인터 포인터의 종류 void *p; // p는 가리킬 수 있는 변수의 타입이 정해져 있지 않은 포인터 int *pi; // pi는 정수 변수를 가리키는 포인터 float *pf; // pf는 실수 변수를 가리키는 포인터 char *pc; // pc는 문자 변수를 가리키는 포인터 int **pp; // pp는 포인터를 가리키는 포인터 struct test *ps; // ps는 test 타입의 구조체를 가리키는 포인터 void (*f)(int) ; // f는 함수를 가리키는 포인터 (return type: void, parameter type: int) A function pointer always points to a function with a specific signature! Thus all functions, you want to use with the same function pointer, must have the same parameters and return-type!

함수의 파라미터로서의 포인터 함수안에서 파라미터로 전달된 포인터를 이용하여 외부 변수의 값 변경 가능 void swap(int *px, int *py) { int tmp; tmp = *px; *px = *py; *py = tmp; } main() int a=1,b=2; printf("swap을 호출하기 전: a=%d, b=%d\n", a,b); swap(&a, &b); printf("swap을 호출한 다음: a=%d, b=%d\n", a,b);

배열과 포인터 배열의 이름: 사실상의 포인터와 같은 역할 컴파일러가 배열의 이름을 배열의 첫번째 주소로 대치 10 A[0] A 14 A[1] 18 A[2] 22 A[3] 26 A[4] 30 A[5] 컴파일러가 배열의 이름을 배열의 첫번째 주소로 대치

구조체의 포인터 구조체의 요소에 접근하는 연산자: -> 98 2 s.i = ps->i ps 3.14 s.f = ps->f main() { struct { int i; float f; } s, *ps; ps = &s; ps->i = 2; ps->f = 3.14; }

포인터의 포인터 56 26 ‘A’ 변수 a 포인터 p 89 포인터의 포인터 pp int a; // 정수 변수 선언 int *p; // 정수 포인터 선언 int **pp; // 정수 포인터의 포인터 선언 p = &a; // 변수 a와 포인터 p를 연결 pp = &p; // 포인터 p와 포인터의 포인터 pp를 연결

포인터 연산 포인터에 대한 사칙연산: 포인터가 가리키는 객체단위로 계산된다. 10 A[0] p 14 A[1] 18 A[2] p+1 // 포인터 p가 가리키는 객체의 바로 뒤 객체 p-1 // 포인터 p가 가리키는 객체의 바로 앞 객체 10 A[0] p 14 A[1] 18 A[2] 22 A[3] 26 A[4] 30 A[5] p+1 p-1

포인터 사용시 주의할 점 포인터가 아무것도 가리키고 있지 않을 때는 NULL로 설정 초기화가 안된 상태에서 사용 금지 int *pi=NULL; 초기화가 안된 상태에서 사용 금지 main() { char *pc; // 포인터 pi는 초기화가 안되어 있음 *pc = 'E’; // 위험한 코드 }

동적 메모리 할당 프로그램이 메모리를 할당받는 방법 정적 메모리 할당 정적 메모리 동적 메모리 할당 메모리의 크기는 프로그램이 시작하기 전에 결정 프로그램의 수행 도중에 그 크기가 변경될 수는 없다. 만약 처음에 결정된 크기보다 더 큰 입력이 들어온다면 처리하지 못할 것이고 더 작은 입력이 들어온다면 남은 메모리 공간은 낭비될 것이다. (예) 변수나 배열의 선언 int buffer[100]; char name[] = “data structure"; 프로그램의 실행 도중에 메모리를 할당받는 것 필요한 만큼만 할당을 받고 또 필요한 때에 사용하고 반납 메모리를 매우 효율적으로 사용가능 메모리 200바이트가 필요한데…. 운영체제 프로그램

동적 메모리 할당 전형적인 동적 메모리 할당 코드 동적 메모리 할당 관련 라이브러리 함수 main() { int *pi; pi = (int *)malloc(sizeof(int)); // 동적 메모리 할당 ... … // 동적 메모리 사용 free(pi); // 동적 메모리 반납 } 동적 메모리 할당 관련 라이브러리 함수 malloc(size) // 메모리 할당 free(ptr) // 메모리 할당 해제 sizeof(var) // 변수나 타입의 크기 반환(바이트 단위)

동적 메모리 할당 라이브러리 malloc(int size) free(void *ptr) sizeof 연산자 (char *)malloc(100) ; /* 100 바이트 할당 */ (int *)malloc(sizeof(int));/* 정수 1개를 저장할 메모리 확보*/ (struct Book *)malloc(sizeof(struct Book))/* 하나의 구조체 생성 */ free(void *ptr) ptr이 가리키는 할당된 메모리 블록을 해제 sizeof 연산자 변수나 타입의 크기 반환(바이트 단위)

동적 메모리 할당 예제 struct Example { int number; char name[10]; }; void main() { struct Example *p; p=(struct Example *)malloc(2*sizeof(struct Example)); if(p==NULL){ fprintf(stderr, "can't allocate memory\n") ; exit(1) ; } p->number=1; strcpy(p->name,"Park"); (p+1)->number=2; strcpy((p+1)->name,"Kim"); free(p);