3D Vision Lecture 7 동작 이해 (광류).

Slides:



Advertisements
Similar presentations
소프트웨어 프로세스. 1 내용  소프트웨어 프로세스  생명주기의 의미  생명주기 모델 –Waterfall Model –prototyping model –Spiral Model –Iteration Model.
Advertisements

Personal improvement project Fall, 2015 Prof. Baekseo Seong.
1 Chapter 2 Basic Physics of Semiconductors  2.1 Semiconductor materials and their properties  2.2 PN-junction diodes  2.3 Reverse Breakdown.
실험 8. Cyclic Voltammetry - 7 조 : 한지영, 이호연, 최은진, 최효린 -
김예슬 김원석 김세환. Info Northcutt Bikes Northcutt Bikes The Forecasting problem The Forecasting problem The solution 1~6 The.
도 입 Introduction 여러분 중에 부모인 분 손들어보세요. How many of you are parents? 여러분의 아이가 태어난 날부터 아이의 성장을 위해 어떤 방법으로 아이를 키우시겠습니까 ? What specific ways are you concerned.
2 전기회로의 기초 기초전자회로 PPT. ○ 생체의공학과 송지훈 35%
검출기 눈, 사진, Photoelectric device, Photomultipliers, Image intensifiers, Charged Coupled Device,
ALL IN ONE WORKING HOLIDAY!
Master Thesis Progress
SAR 영상자료를 이용한 해양 파라미터 추출 기법 연구
Multimedia Programming 04: Point Processing Departments of Digital Contents Sang Il Park.
6주차:『GPU(CUDA) Programming』
Sources of the Magnetic Field
Multiple features Linear Regression with multiple variables (다변량 선형회귀)
Chapter 7 ARP and RARP.
스테레오 비젼을 위한 3장 영상의 효율적인 영상정렬 기법
6.9 Redundant Structures and the Unit Load Method
Multimedia Programming 05: Point Processing
Snake : Active Contour Model Computer Vision & Pattern Recognition
Chapter 3 데이터와 신호 (Data and Signals).
Mesh Saliency 김 종 현.
REINFORCEMENT LEARNING
7장 : 캐시와 메모리.
Multimedia Programming 06: Point Processing3
On the computation of multidimensional Aggregates
Numerical Analysis - preliminaries -
포항공과대학교 COMPUTER VISION LAB. 석박통합과정 여동훈
제 34 장 금융정책과 재정정책이 총수요에 미치는 효과 1.
Ch. 10 Algorithm Efficiency & Sorting
Ch. 10 Algorithm Efficiency & Sorting
Internet Computing KUT Youn-Hee Han
Realistic Projectile Motion
제 14 장 거시경제학의 개관 PowerPoint® Slides by Can Erbil
1 도시차원의 쇠퇴실태와 경향 Trends and Features of Urban Decline in Korea
Cluster Analysis (군집 분석)
5. 비제약 최적설계의 수치해법 (Numerical Methods for Unconstrained Optimum Design)
강문경 · 박용욱 · 이훈열 (강원대학교 지구물리학과) 이문진 (한국해양연구원 해양시스템안전연구소)
Fault Diagnosis for Embedded Read-Only Memories
EnglishCare 토.마.토. 토익 L/C 일상 어휘 ④ 강 사 : 김 태 윤.
Open Class Lesson- L2B3 Greeting (5’ 00”) Word Like Daddy, Like Mommy
GPU Gems 3 Chapter 13. Volumetric Light Scattering as a Post-Process
Medical Instrumentation
PCA Lecture 9 주성분 분석 (PCA)
Structural Dynamics & Vibration Control Lab., KAIST
Multimedia Programming 10: Unsharp Masking/ Histogram Equalization
Changing Objectives of Optimization
9. Do You Have a Scientific Mind?
브레인스토밍이란? 공학입문 설계 네번째 시간 공학입문설계
제 세 동.
Welcome to Virus World 바이러스의 세계로 초대합니다.
M P E G MPEG 1 Overview 제어인식연구실 이 찬 우 10월 19일 1998년.
이산수학(Discrete Mathematics)
PI 추진 시 Change Agent의 역할.
히스토그램 그리고 이진화 This course is a basic introduction to parts of the field of computer vision. This version of the course covers topics in 'early' or 'low'
점화와 응용 (Recurrence and Its Applications)
The World of English by George E.K. Whitehead.
CHAPTER 05 프로세스 및 프로그램 설계.
자동제어공학 4. 과도 응답 정 우 용.
이산수학(Discrete Mathematics)
Hongik Univ. Software Engineering Laboratory Jin Hyub Lee
A SMALL TRUTH TO MAKE LIFE 100%
검출기 눈, 사진, Photoelectric device, Photomultipliers, Image intensifiers, Charged Coupled Device,
3D Vision This course is a basic introduction to parts of the field of computer vision. This version of the course covers topics in 'early' or 'low' level.
[CPA340] Algorithms and Practice Youn-Hee Han
Ray Casting 발표자 : 박 경 와
경사 식각을 이용한 폴리머 광 스위치 2층 배선 기술
Chapter 2. Coulomb’s Law & Electric Field Intensity
Chapter 4. Energy and Potential
Speaking -여섯 번째 강의 (Review ) RACHEL 선생님
Presentation transcript:

3D Vision Lecture 7 동작 이해 (광류)

Optical Flow: Outline 예제 (Examples) Formal definition, 1D case From 1D to 2D: Aperture Problem Course motion and pyramids

Optical flow 광류 (optical flow) = 각 픽셀에서 움직임 측정값

Problem definition: optical flow 영상 H 에서 I 로 변형되는 각 픽셀 움직임을 어떻게 계산 ? 픽셀 대응 관계를 구하여 해결 H 영상의 각 픽셀에 대해, I 영상에서 이웃한 픽셀들 중에서 컬러 값이 유사한 픽셀 선택 Key assumptions 색 일관성 (color constancy) : H 영상에서 각 픽셀들은 I 영상에서도 비슷한 컬러 값을 갖는다 For grayscale images, this is brightness constancy 작은 움직임 (small motion) : 픽셀들의 움직임은 비교적 작은 범위에 제한된다 This is called the optical flow problem

Optical Flow: Outline Examples 1D의 경우 광류 정의 (Formal definition, 1D case)_ From 1D to 2D: Aperture Problem Course motion and pyramids Flow Segmentation

Optical Flow Image sequence Tracked sequence (single camera) Image tracking 3D computation Image sequence (single camera) Tracked sequence 3D structure + 3D trajectory

What is Optical Flow? Optical Flow Velocity vectors Common assumption: 영상 패치들은 밝기 값의 변화가 없다 (brightness constancy)

Optical Flow Assumptions: Brightness Constancy * Slide from Michael Black,

Optical Flow Assumptions: * Slide from Michael Black

Optical Flow Assumptions: * Slide from Michael Black,

{ Optical Flow: 1D Case Brightness Constancy Assumption: Because no change in brightness with time The gray level of a point does not change when moved over a short period of time. Ix v It

Tracking in the 1D case: ?

Tracking in the 1D case: Temporal derivative Spatial derivative Assumptions: Brightness constancy Small motion

Tracking in the 1D case: Iterating helps refining the velocity vector Temporal derivative at 2nd iteration Can keep the same estimate for spatial derivative Converges in about 5 iterations

Algorithm for 1D tracking: Compute local image derivative at p: Initialize velocity vector: Repeat until convergence: Compensate for current velocity vector: Compute temporal derivative: Update velocity vector: For all pixel of interest p: Need access to neighborhood pixels round p to compute Need access to the second image patch, for velocity compensation: The pixel data to be accessed in next image depends on current velocity estimate (bad?) Compensation stage requires a bilinear interpolation (because v is not integer) The image derivative needs to be kept in memory throughout the iteration process Requirements:

Optical Flow: Outline Examples Formal definition, 1D case 1D에서 2D로 확장: 구멍 문제 (Aperture Problem) Course motion and pyramids Flow Segmentation

From 1D to 2D tracking 1D: 2D: Shoot! One equation, two velocity (u,v) unknowns…

From 1D to 2D tracking We get at most “Normal Flow” – with one point we can only detect movement perpendicular to the brightness gradient. Solution is to take a patch of pixels Around the pixel of interest. * Slide from Michael Black,

How does this show up visually? Known as the “Aperture Problem”

Aperture Problem Exposed Motion along just an edge is ambiguous

Aperture Problem: Example

Aperture Problem in Real Life

From 1D to 2D tracking The Math is very similar: Window size here ~ 5x5 or 11x11

More Detail: Solving the aperture problem 각 픽셀에 대해 더 많은 수식을 어떻게 구할 것인가 ? 기본 아이디어 : 추가적인 제약조건을 사용 광류는 지역적으로 매우 유사하다는 가정 사용 방법-1 : 각 픽셀의 이웃 픽셀들은 동일한 광류 (u,v)를 갖는다고 가정 이웃 픽셀을 정의하기 위해 5x5 윈도우 사용하면, 각 픽셀당 25개의 수식이 만들어짐 * From Khurram Hassan-Shafique

Lukas-Kanade flow 문제점 : 모른 변수 수보다 더 많은 수식이 만들어짐 문제점 : 모른 변수 수보다 더 많은 수식이 만들어짐 해결책 : 최소 에러 문제로 변환하여 해결 해 d 를 구하기 위한 최소 에러 해결 방법은 : 합 연산은 KxK 크기의 윈도우 내의 모든 픽셀에 대해 수행 이 방법은 Lukas & Kanade (1981) 에 의하여 제안됨 * From Khurram Hassan-Shafique

Conditions for solvability 최적의 (u, v) 다음과 같은 Lucas-Kanade 수식을 만족함 equation 위 식을 풀기 위해서는 ? ATA should be invertible ATA should not be too small due to noise eigenvalues l1 and l2 of ATA should not be too small ATA should be well-conditioned l1/ l2 should not be too large (l1 = larger eigenvalue) * From Khurram Hassan-Shafique

Edge gradients have one dominant direction large l1, small l2 * From Khurram Hassan-Shafique

Low texture region gradients have small magnitude small l1, small l2 * From Khurram Hassan-Shafique

High textured region gradients have different directions, large magnitudes large l1, large l2 * From Khurram Hassan-Shafique

Observation 광류 계산식은 두 영상을 비교하여 해를 구하지만, BUT 해의 민감도는 한 영상의 상황을 분석하여 계산 가능 ! 위 분석을 통해 어떤 픽셀의 추적은 비교적 용이하고 어떤 픽셀의 추적은 어려운지 판단 가능 특징 추적에 매우 유용하게 사용될 수 있음 ... Once suggestion: Track Harris Corners! * From Khurram Hassan-Shafique

Optical Flow: Outline Examples Formal definition, 1D case From 1D to 2D: Aperture Problem 피라미드 (pyramid) 를 이용한 광류 계산

Revisiting the small motion assumption 작은 움직임이라 할 수 있나 ? Probably not—it’s much larger than one pixel (2nd order terms dominate) 이 문제를 어찌 해결할 것인가 ? * From Khurram Hassan-Shafique

Reduce the resolution! * From Khurram Hassan-Shafique

Coarse-to-fine optical flow estimation Gaussian pyramid of image It-1 Gaussian pyramid of image I image I image It-1 u=10 pixels u=5 pixels u=2.5 pixels u=1.25 pixels image It-1 image I

Coarse-to-fine optical flow estimation Gaussian pyramid of image It-1 Gaussian pyramid of image I image I image It-1 run iterative L-K warp & upsample run iterative L-K . image J image I

Multi-resolution Lucas Kanade Algorithm Compute Iterative LK at highest level For Each Level i Take flow u(i-1), v(i-1) from level i-1 Upsample the flow to create u*(i), v*(i) matrices of twice resolution for level i. Multiply u*(i), v*(i) by 2 Compute It from a block displaced by u*(i), v*(i) Apply LK to get u’(i), v’(i) (the correction in flow) Add corrections u’(i), v’(i) to obtain the flow u(i), v(i) at ith level, i.e., u(i)=u*(i)+u’(i), v(i)=v*(i)+v’(i) upsampling = To increase the sampling rate

Optical Flow Results

Optical Flow Results

Optical flow Results