4. 관계 데이터베이스 (Relational Database)- 7, 8장

Slides:



Advertisements
Similar presentations
GIS Data Storage Trends ESRI White Paper (1997) 한국에스리 고객지원센터.
Advertisements

제5장제5장 데이터베이스처리. Q1 데이터베이스의 목적은 무엇인가 ? Q2 데이터베이스는 무엇을 포함하는가 ? Q3 DBMS 란 무엇이며, 어떻게 사용하는가 ? Q4 데이터베이스 애플리케이션이 무엇인가 ? Q5 전사적인 것과 개인적인 DBMS 의 차이점은 무엇인가 ?
Chapter 7: Entity-Relationship 모델
소리가 작으면 이어폰 사용 권장!.
데이터 모델링 방법론 2003년 03월.
데이터베이스 시스템.
실전 데이터모델링 & 데이터베이스 설계와 구축
제약 조건 부모 테이블 자식 테이블 입 력 수 정 삭 제  관계형성을 통한 참조 무결성
Chapter 02. 데이터 모델링.
관계 대수와 SQL.
4. 관계 데이터베이스 (Relational Database)
4장. 관계 대수와 SQL SQL 관계 데이터 모델에서 지원되는 두 가지 정형적인 언어
DBMS실습(I) 데이터베이스 기본개념 2015년 1학기 동서울대학교 컴퓨터소프트웨어과.
SQL 개요 SQL 개요 - SQL은 현재 DBMS 시장에서 관계 DBMS가 압도적인 우위를 차지하는 데 중요한 요인의 하나
Information Technology
 DBMS의 발전 배경(1) 화일 중심 자료처리(DP)시스템의 한계 ☞ Note
12. 데이터베이스 설계.
Chapter 01 데이터베이스 시스템.
DB2.
데이터 베이스 란? 데이터 베이스 기능 데이터 베이스 관리 시스템 정보시스템의 구성 관게형 데이터 베이스
관계 데이터 모델과 제약조건 개념, 특성, 키, 무결성 제약조건.
2장. E/R 데이터 모델 엔티티-관계성 (Entity-Relationship) 모델의 요소 설계 원칙
데이터 웨어 하우스 이병규 김기훈.
3. 데이터베이스 시스템의 구성.
데이터베이스 설계와 ER 모델 설계, ER 모델링.
Data Modeling Database 활용을 위한 기초 이론 Database의 개요 Data Modeling
4.2 SQL 개요 SQL 개요 SQL은 IBM 연구소에서 1974년에 System R이라는 관계 DBMS 시제품을 연구할 때 관계 대수와 관계 해석을 기반으로, 집단 함수, 그룹화, 갱신 연산 등을 추가하여 개발된 언어 1986년에 ANSI(미국 표준 기구)에서 SQL.
ER-Win 사용 방법.
2장. 관계 데이터 모델과 제약조건 관계 데이터 모델은 지금까지 제안된 데이터 모델들 중에서 가장 개념이 단순한 데이터 모델의 하나 IBM 연구소에 근무하던 E.F. Codd가 1970년에 관계 데이터 모델을 제안함 관계 데이터 모델을 최초로 구현한 가장 중요한 관계 DBMS.
Database 소개.
이산수학(Discrete Mathematics) 수학적 귀납법 (Mathematical Induction)
자격증 모의 테스트 시스템 담당 교수 : 이 상 문 교수님 팀명 : CSCLAB
1장. 데이터베이스 시스템 컴퓨터를 사용하여 정보를 수집하고 분석하는데 데이터베이스 기술이 활용되고 있음
01 데이터베이스 개론 데이터베이스의 등장 배경 데이터베이스의 발전 과정 데이터베이스의 정의 데이터베이스의 특징
5. 관계대수와 관계해석 관계자료 연산(operation)
제 3 장 관계 데이타 모델과 관계 데이타베이스 제약조건
제 4 장 관계 데이터 연산 1. 개요 2. 관계 대수 3. 관계 해석.
Chapter 3: Introduction to SQL
설계 단계 개념적 설계 ER 다이어그램 논리적 설계
CHAPTER 06. 데이터베이스 자료의 조직적 집합체_데이터베이스 시스템의 이해
정보처리기사 8조 신원철 양진원 유민호 이기목 김다연 윤현경 임수빈 조현진.
Project Specification - 학사관리 시스템 과제 2번
Database Programing 이름 : 김 수 종 학번 :
JSP 게시판 구현.
제 8 장 객체지향 데이타베이스와 데이타베이스의 새로운 응용 분야
ER-Win 4.0 Database Modeling Ⅰ. Logical Design
2장. 관계 데이터 모델과 제약조건 관계 데이터 모델은 지금까지 제안된 데이터 모델들 중에서 가장 개념이 단순한 데이터 모델의 하나 IBM 연구소에 근무하던 E.F. Codd가 1970년에 관계 데이터 모델을 제안함 관계 데이터 모델을 최초로 구현한 가장 중요한 관계 DBMS.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
데이터베이스 (Databases) 데이터베이스 소개 문양세 강원대학교 IT대학 컴퓨터과학전공.
4 장. 관계 데이터 모델과 관계 데이터베이스 제약조건
4. 관계 데이터 모델.
05. Relational DBMS 명지대학교 ICT 융합대학 김정호.
관계 데이타 모델과 관계 데이타베이스 제약조건 충북대학교 구조시스템공학과 시스템공학연구실
학습목표 학습목표 본 장은 데이터베이스를 구성하는 개체, 속성, 관계 등을 다룬다. 특별히 데이터베이스의 구조를 테이블에 기초하여 조직하는 관계 데이터 모델은 개체(entity)와 관계(relationship) 들이 테이블의 집합 형태로 되어 간단하고 이해하기 쉬우며.
Chapter 4 변수 및 바인딩.
데이터베이스 개발 단계.
06. SQL 명지대학교 ICT 융합대학 김정호.
동적계획법과 최적화 문제 Dynamic Programming을 사용한 최적화 문제를 해결하는 알고리즘 설계 절차
제 8장 데이터베이스.
제 3 장 관계 데이터 모델 1. 개요 2. 기본 개념 3. 관계 데이터 제약.
Data Warehouse 구축 (설계 위주)
상세 개념적 모델링. 상세 개념적 모델링 정규화를 하는 이유 데이터의 중복성 제거 데이터 모형의 단순화 Entity, Attribute의 누락 여부검증 데이터 모형의 안전성 검증.
1. 관계 데이터 모델 (1) 관계 데이터 모델 정의 ① 논리적인 데이터 모델에서 데이터간의 관계를 기본키(primary key) 와 이를 참조하는 외래키(foreign key)로 표현하는 데이터 모델 ② 개체 집합에 대한 속성 관계를 표현하기 위해 개체를 테이블(table)
뇌를 자극하는 Windows Server 장. 데이터베이스 서버.
1장. 서 론 데이터베이스의 개요 모델의 종류 관계형 모델과 객체 지향형 데이터베이스 SQL이란 무엇인가?
4. 데이타베이스 시스템의 구성.
ER-관계 사상에 의한 관계 데이터베이스 설계
Chapter 2: Intro to Relational Model
GB ridge 웹 모바일및 빅데이터 응용과정 3주차: 데이터베이스 프로그래밍 [경기도형 대학생 취업브리지 사업]
CHAPTER 4 관계 데이터 모델과 관계 데이터베이스 제약조건. CHAPTER 4 관계 데이터 모델과 관계 데이터베이스 제약조건.
Presentation transcript:

4. 관계 데이터베이스 (Relational Database)- 7, 8장

자료 모델링(data modeling)-1 ○ 실세계의 정보를 규칙에 따라 체계적으로 기술하는 과정. - 주어진 관점 : 응용영역이나 목적에 의해 결정. ○ 자료 모델(data model) - DB 구축시마다 자료 모델링 필요 : 매우 어려움(번잡). - 자료 모델 : 자료 모델링의 방법론을 미리 정의 - DB 구축 : 기존의 개발된 자료모델을 이용. ☞ 자료형(data type) : PL ○ 기존의 자료 모델 - 계층형 자료모델(hierarchical data model) - 망(네트워크)형 자료모델(network data model) - 관계 자료모델(relational data model) 개체-관계 자료모델(entity-relationship: E-R모델): 개념자료모델 - 객체지향 자료모델(object-oriented data model) - 객체-관계 자료모델(object-relational data model)

자료모델링-2 구조 자료모델 질의모델 ○ 좋은 자료모델의 조건 ○ 현재 가장 일반적인 자료모델 관계 객체지향 구조 단순 - 표현력 우수 : 복잡한 실세계를 정확하게 반영 가능. - 구조 단순 : 관리(제어)와 처리(조작)의 효율화 가능. ○ 현재 가장 일반적인 자료모델 구조 자료모델 질의모델 관계 구조 단순 표현력 한계 수학적 정형화 이룸 좌동 객체지향 구조 복잡 표현력 우수 정형화 이루지 못함

자료 모델링-3 자료모델별 DBMS(제품) 발전 - 1980년대 후반 이후 : 객체지향형 DBMS 개발에 총력 - 관계형 : DB2, SQL/DS, INGRES, Oracle, Informix,… - 계층형 : IMS, System2000,… - 망형 : IDMS, DMS1100, TOTAL. - 객체지향형 : Iris, Orion, GemStone, OZ+, EXODUS,… - 객체관계형 : ? 발전 - 초기(’65-’70년대초기) DBMS 형태 : IBM에서 계층형 개발, 망형 - 1980년대 DB 기술 : 관계형 DB가 상용화되어 사용 - 1980년대 후반 이후 : 객체지향형 DBMS 개발에 총력 - 1990s : 전자상거래를 위한 웹에서 자료 교환 - 2000년대 초 : O-R 모델 => 멀티미디어형 DB

 1. 관계 데이터 모델(1) p76 관계 데이터 모델(relational data model)의 탄생 1970년에 IBM의 E. F. Codd에 의해 제안 관계 데이터 모델의 특성 수학에서의 릴레이션(relation)과 집합(set) 이론에 기초 일반 사용자는 테이블(table) 형태로 생각 통상적인 테이블의 개념과는 다름 관계 데이터 모델의 직관적인 이해에 도움 테이블의 열(column) = 필드(field) 혹은 아이템(item) ≒ 관계 데이터 모델의 애트리뷰트(attribute) 테이블의 행(row) = 레코드(record) ≒ 관계 데이터 모델의 투플(tuple)

 관계 데이터 모델(2) 학생(STUDENT) 테이블 : 릴레이션 p76 학번 (Sno) 이름 (Sname) 학년 (Year) 학과 (Dept) 100 나 수 영 4 컴퓨터 200 이 찬 수 3 전기 300 정 기 태 1 컴퓨터 400 송 병 길 4 컴퓨터 500 박 종 화 2 산공

 관계 데이터 모델의 구성요소 (4) 테이블(table) ≒ 릴레이션(relation) (2) 도메인(domain) - 애트리뷰트가 취할 수 있는 값(value)들의 집합 ① 단순 도메인 (simple domain) → 단순 애트리뷰트 : 원자 값 ② 복합 도메인 (composite domain) → 복합 애트리뷰트 : 복합 값 연, 월, 일 ⇒ 날짜:<연,월,일> (1) 애트리뷰트(attribute) - 도메인의 역할(role) 이름 - 한 릴레이션 내에서 애트리뷰트 이름들은 모두 달라야 함 (3) 엔티티(entity) ≒ 레코드(record) (5) 관계(relationship) ☞ Tip 애트리뷰트 이름과 도메인 이름은 같을 수도 있음 역할 이름을 도메인 이름으로 지정

 2. 릴레이션의 개념 p79 [그림 4.2] STUDENT 릴레이션의 정의 DCL DOMAIN DSNO INTEGER; DCL DOMAIN NAME CHAR(10); DCL DOMAIN DYEAR INTEGER; DCL DOMAIN DEPT CHAR(6); DCL RELATION STUDENT (Sno DOMAIN DSNO, Sname DOMAIN NAME, Year DOMAIN DYEAR, Dept DOMAIN DEPT); DCL RELATION STUDENT (Sno INTEGER, Sname CHAR(10), Year INTEGER, Dept CHAR(6));

▶ STUDENT 릴레이션 예 [그림4.4] 학번 (Sno) 이름 (Sname) 학년 (Year) 학과 (Dept) 100 INTEGER . . DSNO CHAR(10) . . NAME INTEGER . . DYEAR CHAR(6) . . DEPT 도메인 애트리뷰트 학생 (STUDENT) 릴레이션 스키마 학번 (Sno) 이름 (Sname) 학년 (Year) 학과 (Dept) 학생 (STUDENT) 릴레이션 100 나 수 영 4 컴정 200 이 찬 수 3 전기 투플 인스턴스 300 정 기 태 1 컴정 400 송 병 길 4 컴정 500 박 종 화 2 산디

▶ 릴레이션 스키마 (relation schema) 릴레이션 내포 (relation intension) 또는 릴레이션 스킴 (relation scheme)이라고도 함 릴레이션 이름 + 애트리뷰트 이름 R(A1, A2, ... , An), Ai ⇔ Di  R({A1, A2, ... , An}) 정적 성질(static property) 시간에 무관 시간에 따라 변경되지 않음 릴레이션 타입과 같은 의미

▶ 릴레이션 인스턴스 (relation instance) 릴레이션 외연 (relation extension)이라고도 함 릴레이션 R의 인스턴스 어느 한 시점에 릴레이션 R이 포함하고 있는 투플들의 집합 {< V1, V2, ... , Vn >} Vi ∈ Di 릴레이션의 내용, 상태, snapshot 투플: {(attr1=V1, attr2=V2, ··· , attrn=Vn)} 동적 성질(dynamic property) 삽입, 삭제, 갱신으로 시간에 따라 변함 릴레이션 값(보통 릴레이션)

▶ 릴레이션(Relation) R ⅰ. 수학적 정의 [그림 4.5] ⅱ. 개념적 정의 릴레이션 R : 카티션 프로덕트(Cartesian product)의 부분집합 R ⊆ D1 × D2 × ... × Dn , 단 Di : i번째 도메인 즉 n-투플, <d1, d2, ... , dn>의 집합 di ∈ Di, i = 1,2, ... ,n n : R의 차수(degree :1차, 2차, 3차, ... , n차) 투플의 수 : 카디널리티(cardinality) [그림 4.5] ⅱ. 개념적 정의 릴레이션 스키마 + 릴레이션 인스턴스 100 200 C412 C123 C312 <100,C412> <100,C123> <100,C312> <200,C412> <200,C123> <200,C312> 학번 (Sno) 과목번호 (Cno) 학번 ⅹ과목번호 (Sno ⅹ Cno)

 릴레이션의 특성 (1) p82 1). 투플의 유일성(uniqueness of tuples) 릴레이션 = 투플들의 "집합(set)" 2). 투플의 무순서성 (no ordering of tuples) 릴레이션 : 추상적 개념  투플들의 집합(set) 테이블 : 구체적 개념 3). 애트리뷰트의 무순서성(no ordering of attributes) 릴레이션 스키마 → 애트리뷰트들의 "집합" 투플 : <attribute: value>쌍의 집합

 릴레이션의 특성 (2) 4). 애트리뷰트의 원자성(atomicity) 애트리뷰트 값은 원자 값(atomic value) 논리적으로 분해 불가능 정규화 릴레이션 (normalized relation) 애트리뷰트 값으로 원자 값만 허용되는 릴레이션 비정규화 릴레이션은 분해(decomposition)를 통해 정규화 동등한 의미를 유지 관계 데이터모델 : 기본적으로 정규화 릴레이션만 취급 널 값(null value)도 원자 값으로 취급 널 값(null value) : unknown, inapplicable value 도메인 단순 도메인 복합 도메인 : 값을 하나의 단위로 취급

▶ 릴레이션의 정규화 p84 학번 (Sno) 과목성적 (Cgrade) 과목번호 (Cno) 성적 (Grade) 100 C413 등록1 (ENROL1) 등록 (ENROL) 학번 (Sno) 과목성적 (Cgrade) 과목번호 (Cno) 성적 (Grade) 100 C413 A E412 200 C123 B 300 C312 C324 C 400 500 학번 (Sno) 과목번호 (Cno) 성적 (Grade) 100 C413 A E412 200 C123 B 300 C312 C324 C 400 500 (b) 정규 릴레이션 (a) 비정규 릴레이션

 관계 데이터베이스 개념 p85 관계 데이터베이스(relational database) 테이블들의 집합 데이터베이스를 시간에 따라 그 내용(상태)이 변할 수 있는 테이블 형태로 표현 관계 데이터베이스 스키마(relational database schema) = {릴레이션 스키마} + {무결성 제약조건} 관계 데이터 모델 ⇔ 프로그래밍 시스템 릴레이션 ⇔ 파일 투플 ⇔ 레코드 (레코드 어커런스) 애트리뷰트 ⇔ 필드(필드 타입) ☞ Tip 관계 데이터베이스라고 할 때 데이터가 물리적 테이블 형태로 저장된다는 것을 의미하지는 않음

 example(1) p88 대학(University) 관계 데이터베이스 학번 (Sno) 이름 (Sname) 학년 (Year) 학과 (Dept) 100 나 수 영 4 컴퓨터 200 이 찬 수 3 전기 300 정 기 태 1 400 송 병 길 500 박 종 화 2 산공 학생 (STUDENT) 과목번호 (Cno) 과목이름 (Cname) 학점 (Credit) 학과 (Dept) C123 프로그래밍 3 컴퓨터 C312 자료 구조 C324 화일 구조 C413 데이터베이스 E412 반 도 체 전자 담당교수 (PRname) 김성국 황수관 이규찬 이일로 홍봉진 과목 (COURSE)

 example(2) 대학(University) 관계 데이터베이스(cont’d) 학번 (Sno) 100 200 300 400 500 과목번호 (Cno) C413 E412 C123 C312 C324 성적 (Grade) A B C 중간성적 (Midterm) 90 95 85 75 80 65 기말성적 (Final) 등록 (ENROL)

 데이터베이스 키(key) p87 키 제약조건 (key Constraints) cf. 무결성제약조건 p90 키(key) 각 투플을 유일하게 식별할 수 있는 애트리뷰트 집합(set of attributes) (1) 후보 키(candidate key) 릴레이션 R(A1, A2, ..., An)에 대한 애트리뷰트 집합, K({Ai , Aj , ..., Ak})로서 다음 두 성질을 만족 ① 유일성(uniqueness) 각 투플에 대해 K({Ai , Aj , ... , Ak})의 값(< vi , vj , ... , vk >)은 유일 ② 최소성(minimality) K는 각 투플을 유일하게 식별하는데 필요한 애트리뷰트만 포함

 데이터베이스 키 (2) (2) 슈퍼 키 (super key) (3) 기본 키 (primary key)  데이터베이스 키 (2) (2) 슈퍼 키 (super key) 유일성(uniqueness)은 만족하지만 최소성(minimality)은 만족하지 않는 애트리뷰트의 집합 (3) 기본 키 (primary key) 후보 키(candidate key) 중에서 지정된 하나의 키 데이터베이스 설계자가 지정 각 투플에 대한 기본 키 값은 항상 유효한 값이어야 함 null 값이 허용되지 않음 (4) 대체 키 (alternate key) 후보 키 중에서 기본 키를 제외한 나머지 후보 키

 외래 키(Foreign key) (5) 외래 키(foreign key) 릴레이션 R의 애트리뷰트 집합 FK가 릴레이션 S의 기본 키일 때 이 FK는 R의 외래키이다. (FK의 도메인) = (S의 기본 키의 도메인) FK의 값은 S에 존재하는 값이거나 null R과 S가 같은 릴레이션일 수도 있음 R을 참조 릴레이션(referencing relation), S를 피참조 릴레이션(referenced relation)이라 함. 릴레이션 R은 FK를 통해 릴레이션 S를 참조

 외래 키 (2) R  S인 경우 R = S인 경우 교수 (교수번호, 교수이름, 학과번호, 직급) 학과 (학과번호, 학과이름, 학과장교수번호, 학생수) PK FK 학생 (학번, 이름, 학년, 학과) 과목 (과목번호, 과목이름, 학점, 학과, 담당교수) 등록 (학번, 과목번호, 성적) FK FK R = S인 경우 교수1 (교수번호, 교수이름, 학과번호, 학장교수번호) PK FK

 6. 무결성 제약(Integrity Constraints) p90 (1) 개체 무결성(entity integrity) 기본키 값은 언제 어느 때고 null 값을 가질 수 없다. ☞ Tip : null 값 정보 부재를 명시적으로 표현하는 특수한 데이터 값 ① 알려지지 않은 값(unknown value) ② 해당 없음(inapplicable) (2) 참조 무결성(referential integrity) 외래 키 값은 반드시 피참조 릴레이션의 기본 키 값이거나 null이다. 이 무결성 제약조건은 데이터베이스 상태(database state)가 항상 만족시켜야 될 제약조건임

 무결성 제약(Integrity Constraint)(2) 데이터베이스 상태 (database state) p92 어느 한 시점에 데이터베이스에 저장되어 있는 모든 데이터 값 (투플) 데이터베이스 인스턴스(database instance) 데이터베이스 스키마에 포함되어 있는 모든 릴레이션들의 인스턴스 집합 데이터베이스 상태의 계속적인 변화 Why? 삽입, 삭제, 변경 연산 Stable or Unstable State ★ DBMS는 데이터베이스 상태의 변화에도 항상 무결성 제약을 만족시키도록 해야 함.