소프트웨어시스템 실습 머신러닝(2) 2016. 2학기
Artificial Neural Networks Supervised Learning Artificial Neural Networks
Artificial Neural Networks 인간의 뇌 신경망을 모방 입력 출력
Artificial Neural Networks 구성 요소 Activation function Network topology (or architecture) Neuron 수, Layer 수 Training algorithm Neuron 간 weight를 설정하는 알고리즘
Artificial Neural Networks Activation functions Unit step function Sigmoid function Commonly used Differentiable (미분가능): Weight 최적화를 위해 중요한 성질
Artificial Neural Networks Network topology Layer의 수 Network 정보의 backward flow 여부 각 layer의 노드 수
Artificial Neural Networks Network topology Single-layer network 기초적인 패턴 classification에 활용 특히, linearly separable patterns Multi-layer network Hidden layer 포함
Artificial Neural Networks Network topology Deep Neural Network: 다수의 hidden layer를 가짐 => Deep Learning
Artificial Neural Networks Network topology Feed-forward network multilayer feedforward network (or Multilayer Perceptron, MLP): ANN의 표준 Feedback (or recurrent) network allows extremely complex patterns to be learned used for stock market prediction, speech comprehension, or weather forecasting Short-term memory
Artificial Neural Networks Network topology Input layer의 노드 수: 입력데이터의 feature 수를 가지고 결정 Output layer의 노드 수: class 컬럼의 level 수를 가지고 결정 Hidden layer의 노드 수: 마땅한 결정 인자가 없음
Artificial Neural Networks Training algorithm Backpropagation 기법
Artificial Neural Networks 노드의 연산 입력 노드: 받은 신호를 단순히 전달 출력 노드: 합 계산과 활성 함수 계산 2019-04-12
Artificial Neural Networks 예) 샘플 a를 인식해 보자. 맞추나? 나머지 b, c, d는? 이 퍼셉트론은 w=(1,1)T, b=-0.5 따라서 결정 직선은 2019-04-12
Artificial Neural Networks 퍼셉트론 학습 예) AND 분류 문제 a=(0,0)T b=(1,0)T c=(0,1)T d=(1,1)T ta= -1 tb= -1 tc= -1 td=1 1 x1 ? y x2 a b c d 2019-04-12
Artificial Neural Networks 단계 1 식 (4.2) 매개변수 집합 Θ={w, b} 단계 2 분류기 품질을 측정하는 J(Θ)를 어떻게 정의할 것인가? Y: 오분류된 샘플 집합 J(Θ)는 항상 양수 Y가 공집합이면 J(Θ)=0 |Y|가 클수록 J(Θ) 큼 2019-04-12
Artificial Neural Networks 단계 3 J(Θ)=0인 Θ를 찾아라. Gradient descent method (내리막 경사법) 현재 해를 방향으로 이동 학습률 ρ를 곱하여 조금씩 이동 2019-04-12
Artificial Neural Networks 알고리즘 스케치 초기해를 설정한다. 멈춤조건이 만족될 때까지 현재 해를 방향으로 조금씩 이동시킨다. 알고리즘에 필요한 수식들 Learning rate 내리막 방향으로 조금씩 이동 2019-04-12
Artificial Neural Networks w(0)=(-0.5,0.75)T, b(0)=0.375 ① d(x)= -0.5x1+0.75x2+0.375 Y={a, b} ② d(x)= -0.1x1+0.75x2+0.375 Y={a} 2019-04-12
Artificial Neural Networks A dataset Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc …
Artificial Neural Networks Training the neural network Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc …
Artificial Neural Networks 초기 weight값은 random하게 설정 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc …
Artificial Neural Networks Training data를 하나씩 입력 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 1.9
Artificial Neural Networks 각 노드의 activation 결과에 따라 출력값 계산 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 0.8 1.9
Artificial Neural Networks 계산된 출력값과 실제 정답 출력값을 비교 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 0.8 1.9 error 0.8
Artificial Neural Networks Error값에 따라 weight 조정 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 0.8 1.9 error 0.8
Artificial Neural Networks 또 새로운 training data를 입력 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 1.7
Artificial Neural Networks 각 노드의 activation 결과에 따라 출력값 계산 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1.7
Artificial Neural Networks 계산된 출력값과 실제 정답 출력값을 비교 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1 1.7 error -0.1
Artificial Neural Networks Error값에 따라 weight 조정 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1 1.7 error -0.1
Artificial Neural Networks Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1 1.7 error -0.1 Error 가 임계점 이하로 떨어질 때까지 weight 조정을 반복
Artificial Neural Networks Example – Modeling the strength of concrete 예측변수
Artificial Neural Networks Data preparation Neural networks은 input data가 0을 중심으로 좁은 영역을 가질 때 그 성능이 우수함
Artificial Neural Networks Training a model
Artificial Neural Networks Training a model Bias term Sum of squared errors (SSE)
Artificial Neural Networks Evaluating the model compute() 함수: 2개의 정보를 리턴 $neurons : 각 layer에 대한 neuron 정보 $net_result: 예측값을 저장
Artificial Neural Networks Improving the model SSE가 많이 감소되었음
Artificial Neural Networks Evaluating the improved model # of hidden layers 5 7 10 15 correlations 0.924 0.945 0.951 0.925
Artificial Neural Networks Deep Networks An abstracted feature Non-output layer = Auto-encoder Input layer Output layer Hidden layer Hierarchical feature layer output layer쪽으로 갈수록 Feature abstraction이 강해짐
Artificial Neural Networks Deep Networks Learning Multi-layer network 학습을 한꺼번에 하지 않고, 각 layer별로 단계 적으로 수행
Feature detectors
what is each of nodes doing?
Hidden layer nodes become self-organised feature detectors 1 5 10 15 20 25 … … 1 strong +ve weight low/zero weight 63
What does this unit detect? 1 5 10 15 20 25 … … 1 strong + weight low/zero weight Top row에 있는 pixel에 강하게 반응하는 feature 63
What does this unit detect? 1 5 10 15 20 25 … … 1 strong + weight low/zero weight Top left corner의 dark 영역에 강하게 반응하는 feature 63
Deep Neural Networks etc … etc … Feature abstraction v 특정 위치의 line을 layer etc … Feature abstraction Line-level feature들을 이용하여 윤곽을 탐지하는 feature들의 layer etc … v
Deep Neural Networks Feature abstraction
Support Vector Machines Supervised Learning Support Vector Machines
Support Vector Machines Classification with hyperplanes
Support Vector Machines Classification with hyperplane 어떤 직선이 가장 좋을까? Maximum Margin Hyperplane (MMH)
Support Vector Machines Hyperplane equation
Support Vector Machines Maximum Margin Hyperplane (MMH) Margin : support vector를 거치는 2개의 평면 사이의 거리 이 값을 최대가 되도록 W값을 조정 필요 분모에 W 인자가 있어 불편 ||W|| 값은 제곱근을 가지고 있음 모든 training data에 대하여 아래 조건을 만족
Support Vector Machines For nonlinearly separable data: soft margin slack variable: creates a soft margin that allows some points to fall on the incorrect side of the margin 분류 조건을 위반하는 데이터는 그 위반 거리만큼의 penalty (cost) 부여
Support Vector Machines For nonlinearly separable data: Kernel function Non-linear relationship -> linear relationship 새로운 feature를 생성
Support Vector Machines 예) Kernel mapping
Support Vector Machines Kernel 함수
Support Vector Machines SVM 문제 결국 kernel 함수에 따라 함수값만을 계산하면 되며, 실제 mapping 함수는 굳이 알 필요가 없음 (그 mapping 함수가 존재한다는 사실만 알면 됨) 문제 변환 Kernel 함수 새로운 공간으로 Mapping
Support Vector Machines Kernel 함수 Linear kernel Polynomial kernel Sigmoid kernel Gaussian RBF kernel 많은 경우에 학습 성능이 상대적으로 좋음 마땅한 kernel 함수의 선택 기준이 없음 실험을 통해 결정할 수 밖에 없음
Support Vector Machines SVM with non-linear kernels
Support Vector Machines Example – performing OCR with SVMs Image적 특성값
Support Vector Machines Training a model Linear kernel
Support Vector Machines Training a model
Support Vector Machines Evaluating the model
Support Vector Machines Evaluating the model
Support Vector Machines Improving the model Kernel 함수의 교체
Support Vector Machines Improving the model
Association Rule Mining Unsupervised Learning Association Rule Mining
Association Rule Mining Given: 상품 구매 기록으로부터 상품간의 연관성을 측정하여 함께 거래될 가능성을 규칙으로 표현 일명: 장바구니 분석
Association Rule Mining 패턴발견 빵과 과자를 사는 사람의 80%는 우유를 같이 산다 분유와 기저귀를 사는 사람의 74%는 맥주를 같이 산다 의사결정 맥주 소비는 분유와 기저귀 소비에 영향을 미침 빵과 과자 가격 인상은 우유 소비에 영향을 미침 업무적용 상품 진열대에 (빵, 과자, 우유), (분유, 기저귀, 맥주)를 같이 진열 우유 소비를 조절하기 위해 빵,과자 가격을 조정
Apriori algorithm
Association Rule Mining Transaction ID Iterms 1 Chips, Milk 2 Chips, Diaper, Beer, Cornflakes 3 Milk, Diaper, Beer, Pepsi 4 Chips, Milk, Diaper, Beer 5 Chips, Milk, Diaper, pepsi Basket (Transaction) data 측정치 (X -> Y) Support (지지도) : 전체 레코드에서 상품 X, Y에 대한 거래를 모두 포함하는 비율 Supp(X, Y) Confidence (신뢰도) : 상품 X를 구매한 거래가 발생했을 경우 그 거래가 상품 Y를 포함하는 조건부 확률 Conf (X->Y) = Supp(X,Y)/Supp(X) Lift (향상도) : 상품 X를 구매한 경우, 그 거래가 상품 Y를 포함하는 경우와 상품 Y가 상품 X에 관계없이 구매된 경우의 비율 => Lift (X->Y)=Supp(X,Y)/(Supp(X)∙Supp(Y)) = Conf(X->Y)/Supp(Y) -> 1이 넘으면 의미 있음 측정치 예 {Milk, Diaper} => Beer : Supp=2/5, Conf=2/3, Lift=(2/3)/(3/5)=1.1167
Association Rule Mining Data Preparation Transaction data
Association Rule Mining Data preparation Non-zero 셀의 비율 9,835 * 169 = 1,662,115 셀 => * 0.02609146 = 43,367 물건 구매
Association Rule Mining Data preparation 데이터 내부 관찰 Support 비율
Association Rule Mining Visualizing item support: item frequency plots
Association Rule Mining Visualizing the transaction data: plotting the sparse matrix
Association Rule Mining Training a model
Association Rule Mining Taking subsets of association rules
Association Rule Mining Model visualization
Association Rule Mining Model visualization
Association Rule Mining 일반 데이타베이스에 대한 연관분석 : AdultUCI 연속형 숫자 속성 컬럼이 있으므로 데이터 가공이 필요 필요없는 속성 제거 # load the data and check it data("AdultUCI") dim(AdultUCI) AdultUCI[1:2,] ## remove attributes AdultUCI[["fnlwgt"]] <- NULL AdultUCI[["education-num"]] <- NULL
Association Rule Mining “age”컬럼의 값들을 변경 구간값을 순서있는 요소로 전환 number -> factor로 변환 일반 데이타베이스에 대한 연관분석 : AdultUCI 연속형 실수값을 구간값으로 변환 구간 ## map metric attributes AdultUCI[["age"]] <- ordered(cut(AdultUCI[["age"]], c(15,25,45,65,100)), labels = c("Young", "Middle-aged", "Senior", "Old")) AdultUCI[["hours-per-week"]] <- ordered(cut(AdultUCI[["hours-per-week"]], c(0,25,40,60,168)), labels = c("Part-time", "Full-time", "Over-time", "Workaholic")) AdultUCI[["capital-gain"]] <- ordered(cut(AdultUCI[["capital-gain"]], c(-Inf,0,median(AdultUCI[["capital-gain"]][AdultUCI[["capital-gain"]]>0]),Inf)), labels = c("None", "Low", "High")) AdultUCI[["capital-loss"]] <- ordered(cut(AdultUCI[["capital-loss"]], c(-Inf,0, median(AdultUCI[["capital-loss"]][AdultUCI[["capital-loss"]]>0]), Inf)),
Association Rule Mining 함수형 언어: median 값 찾기 AdultUCI[["capital-gain"]]>0 “capital-gain” 컬럼의 값들이 0 이상인지 여부 (TRUE/FALSE)를 출력 결국 TRUE/FALSE 값을 가지는 vector를 출력 AdultUCI[["capital-gain"]] [AdultUCI[["capital-gain"]]>0] “capital-gain” 컬럼의 값들 중에서 0을 초과한 것만을 추려냄 median( AdultUCI[["capital-gain"]] [AdultUCI[["capital-gain"]]>0] ) “capital-gain” 컬럼의 값이 0을 초과한 것들에서 ‘median 값’을 찾아냄
Association Rule Mining {} -> Y 형태 제거 일반 데이타베이스에 대한 연관분석 : AdultUCI transaction 데이타 포맷으로 변경 Apriori 알고리즘으로 연관분석 수행 RHS 부분의 값을 고정하는 경우 Adult <- as(AdultUCI, "transactions") adult_rules <- apriori(Adult, parameter = list(supp = 0.7, conf = 0.9, minlen=2, target = "rules")); inspect(adult_rules) adult_rules.sorted <- sort(adult_rules, by="lift"); inspect(adult_rules.sorted) plot(adult_rules, method = "graph") adult_rules <- apriori(Adult, parameter = list(supp=0.35, conf=0.8, minlen=2, target="rules"), appearance = list(rhs=c(“income=small", “income=large"), default="lhs")) adult_rules.sorted <- sort(adult_rules, by="lift"); inspect(adult_rules.sorted)
Association Rule Mining 중복 규칙이 다수 존재
Association Rule Mining 집합X의 각 원소(규칙)이 집합Y에 포함되는 규칙이 있다면 TRUE, 아니면 FALSE를 리턴 중복 규칙의 제거 # find redundant rules subset.matrix <- is.subset(adult_rules.sorted, adult_rules.sorted) subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA redundant <- colSums(subset.matrix, na.rm=T) >= 1 which(redundant) # remove redundant rules adult_rules.pruned <- adult.rules.sorted[!redundant] inspect(adult_rules.pruned) plot(adult_rules, method = "graph") TRUE
중복규칙의 제거 T ... T ... T ... T T T ... ... ... T ... T T T ... T is.subset 함수를 통해 얻은 matrix
연관분석
Association Rule Mining Exporting the model
Unsupervised Learning Clustering
Clustering 용도 Summarization of large data Data organization Understand the large customer data Data organization Manage the large customer data Outlier detection Find unusual customer data Classification/Association Rule Mining의 이전 단계
Clustering 용도 Classification/Association Rule Mining의 이전 단계 의미 있는 cluster로부터 class를 도출 Cluster내부에 있는 데이터에 대한 Association Rule Mining을 수행
Clustering 알고리즘의 유형 거리함수(distance function) 기반 밀도(density) 기반 계층형 평면형 Hierarchical clustering Complete-linkage Single-linkage Centroid-linkage Average-linkage Ward’s method 평면형 Partitional clustering k-means k-medoids 밀도(density) 기반 DBScan
평면형 Clustering: k-means : centroid (i+1) 단계 Data Mining Lab., Univ. of Seoul, Copyright ® 2008
K-means clustering 1단계: centroid의 계산 2단계: 데이터 재배치 초기에는 random하게 설정
K-means clustering
K-means clustering Choosing the appropriate number of clusters one rule of thumb: k = square root of (n / 2) Elbow method
K-means clustering Example: finding teen market segments SNS 메타 정보
K-means clustering Understanding & preparing the data Noise 제거
K-means clustering Data preparation Missing values가 너무 많다면, 이를 포함한 행을 모두 삭제하는 것은 좋지 않음 => Dummy coding of missing values 확인
K-means clustering Data preparation: imputing the missing values Imputation: filling in the missing data with a guess as to the true value age컬럼의 값을 전체 평균으로 채우는 것은 비합리적 => 다른 컬럼과의 관계를 고려해보자 gradyear 컬럼을 이용: 이 컬럼은 missing value가 없음 Missing value를 제거하여 계산
K-means clustering Data preparation: imputing the missing values 학년별(gradyear)로 나이 평균을 구하여, 이 평균값을 이용하여 age컬럼에 대한 missing value를 채우자 data.frame 형태로 출력 각 행에 대하여 missing value를 채워야 하므로, Gradyear그룹에 대한 age 평균값을 데이터 행 수 만큼 출력하도록 함
K-means clustering Data preparation: imputing the missing values Missing 상태이면, ave_age 값으로 채움 확인
K-means clustering Training a model Numeric 컬럼만 허용 일단, SNS텍스트에 출현한 단어 빈도 데이터만을 활용하자 0을 중심으로 정규화하는 것이 좋을 수 있음
K-means clustering Evaluating the model Z-score 이므로 0보다 크다면 평균 이상을 의미
K-means clustering Evaluating the model
K-means clustering Understanding the model Clustering 결과를 원본 데이터(teens)에 접합 Cluster별로 메타 정보의 관련성 파악 ? 일단 age 차원에서는 의미있는 해석이 없음
K-means clustering Understanding the model Cluster 2, 5는 female 아닌 사용자가 posting ? SNS에서 여성, 남성이 관심사가 다름을 확인 Clustering 과정에 friends# 를 입력하지 않았지만, Cluster별로 friends# 가 차별화 되고 있음 Clustering: 사용자 behavior를 예측하는 유용한 수단
K-means clustering Using the model cluster 유사한 단어를 표현하는 users 인구학적 정보, 취향, 선호아이템 등이 유사할 가능성이 큼
Clustering 연습 K-means 알고리즘의 활용 data(iris) library(stats) myiris <-iris myiris$Species <-NULL # Species 컬럼 제거 myiris.kmeans <- kmeans(myiris, centers=3) myiris.kmeans <- kmeans(myiris, 3) # 위와 동일한 표현 3개의 cluster를 생성
Iris Data
붓꽃(iris) 데이터 setosa versicolor virginica ? 어떤 종류인가? ? ?
붓꽃(iris) 데이터 붓꽃데이터 3가지 종류(class): setosa, versicolor, virginica 꽃받침길이(Sepal.Length) 꽃받침폭(Sepal.width) 꽃잎길이(Petal.Length) 꽃잎폭(Petal.Width)
붓꽃(iris) 데이터
붓꽃(iris) 데이터 데이터 이해 과정: boxplot
붓꽃(iris) 데이터 boxplot 하위 속성을 나누지 않고 클래스별 데이터를 분석했을 시 클래스마다 특징을 보이면서 보다 분류하기가 쉬워짐을 볼 수 있다.
붓꽃(iris) 데이터 Scatter Plot 2개의 속성간의 관계를 파악 pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species", pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)]) Scatter Plot 2개의 속성간의 관계를 파악
Clustering 연습: 평가 방법 3개 class 존재 => 3개 cluster를 생성하게 함 clustering ... 각 cluster가 원래 class에 속한 데이터를 복원할 수 있는지를 측정
Clustering 연습 > new.mat <- conf.mat[, c(1,3,2)] K-means 알고리즘의 평가: 기존 class분류결과와 비교 table(iris$Species, myiris.kmeans$cluster) conf.mat <- table(iris$Species, myiris.kmeans$cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100) new.mat <- data.frame("c1"=conf.mat[,1], "c3"=conf.mat[,3], "c2"=conf.mat[,2]) new.mat <- as.matrix(new.mat) (accuracy <- sum(diag(new.mat))/sum(new.mat) * 100) as.OOO 형태의 함수 Cluster 배치 변경 # 사실은, 아래와 같이 간단하게 > new.mat <- conf.mat[, c(1,3,2)]
Clustering 연습 클러스터링은 “설명모델 (description model)”을 생성 클러스터링 결과를 담은 객체변수를 출력
Clustering 연습 K-means 모델의 시각화 클러스터 번호를 col속성에 할당 데이터 항목별로 color값을 할당 K-means 모델의 시각화 table(iris$Species, myiris.kmeans$cluster) conf.mat <- table(iris$Species, myiris.kmeans$cluster) plot(myiris[c("Sepal.Length", "Sepal.Width")], col=myiris.kmeans$cluster) points(myiris.kmeans$centers[,c("Sepal.Length","Sepal.Width")], col=1:3, pch=“*”, cex=5)
Clustering 연습 K-means 모델의 해석 myiris.kmeans$centers # 각 cluster의 중심값을 출력 ave <- 0 for(i in 1:ncol(myiris)) ave[i]<- sum(myiris.kmeans$centers[,i])/nrow(myiris.kmeans$centers) ave # 출력
Clustering 연습: Iris 데이터 K-means 모델 평가 km <- kmeans(myiris, centers=3) ss <-km$withinss 거리 각 cluster 내부의 각 구성원 간 거리의 제곱의 합(sum of squares) 값이 작을 수록 품질의 좋다고 평가 거리 ...
Clustering 연습: Iris 데이터 K-means 모델 평가 conf.mat <- table(iris$Species, km$cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100) Cluster Class
Clustering 연습: Iris 데이터 K-means 모델의 평가 ss <-0 for(i in 2:15) ss[i] <- sum(kmeans(myiris, centers=i)$withinss) plot(2:15, ss, type="b", xlab="클러스터 개수", ylab="각 클러스터 SSE의 합")
Clustering 연습: Iris 데이터 K-means 알고리즘의 활용: cluster 품질평가 ss <-0 for(i in 1:15) ss[i] <- sum(kmeans(mywine, centers=i)$withinss) plot(1:15, ss, type="b", xlab="클러스터 개수", ylab="각 클러스터 SS의 합")
Clustering 연습 K-medoids 알고리즘의 활용 Outlier에 강함 ! outlier에 약함 why? VS. library(cluster) myiris.pam <- pam(myiris,3) table (myiris.pam$clustering, iris$Species) VS. K-medoids 모델 K-means 모델 Outlier에 강함 ! why? outlier에 약함
Data Mining Lab., Univ. of Seoul, Copyright ® 2008 계층형 clustering a b c d e a b c d e d e a b c d e 4step 3step 2step 1step 0step Bottom-up (agglomerative) Top-down (divisive) Data Mining Lab., Univ. of Seoul, Copyright ® 2008
Hierarchical Agglomerative Clustering (HAC) 5가지 유형 Simple linkage Complete linkage Average linkage Centroid linkage Ward’s method Ward’s method Sum of Square Error (SSE) 계산
HAC: distance functions Euclidean 거리함수 Manhattan 거리함수 Minkowski 거리함수 Canberra 거리함수
HAC clustering HAC 알고리즘의 활용: single linkage sim_eu <- dist(myiris, method="euclidean") dendrogram <-hclust(sim_eu^2, method=“single”) plot(dendrogram) cluster <- cutree(dendrogram, k=3) table(iris$Species, cluster) table(iris$Species, cls$cluster) conf.mat <- table(iris$Species, cls$cluster)
HAC clustering sim_eu <- dist(myiris, method="euclidean") "euclidean","manhattan", "canberra", "minkowski" dendrogram <-hclust(sim_eu^2, method=“single”) "ward.D2", "single", "complete", "average" , "median“, "centroid"
HAC clustering HAC 모델의 시각화: dendrogram Cutting line에 따라 cluster 개수가 결정
HAC clustering small iris 데이터의 군집분석 iris.num <- dim(iris)[1] # nrow(iris) 와 동일 idx <-sample(1:iris.num, 50) smalliris <- iris[idx,] smalliris$Species <-NULL sim <- dist(smalliris) den <- hclust(sim^2, method="single") plot(den, hang= -1) plot(den, hang= -1, labels=iris$Species[idx])
HAC clustering HAC 모델의 시각화: dendrogram plot(den, hang= -1) plot(den, hang= -1, labels=iris$Species[idx])
HAC 알고리즘의 활용: complete linkage HAC clustering HAC 알고리즘의 활용: average linkage HAC 알고리즘의 활용: complete linkage sim_eu <- dist(myiris, method="euclidean") dendrogram <-hclust(sim_eu^2, method=“average”) plot(dendrogram) cluster <- cutree(dendrogram, k=3) conf.mat <- table(iris$Species, cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100)
HAC 알고리즘의 활용: complete linkage HAC clustering HAC 알고리즘의 활용: complete linkage HAC 알고리즘의 활용: complete linkage table(iris$Species, cls$cluster) conf.mat <- table(iris$Species, cls$cluster) sim_eu <- dist(myiris, method="euclidean") dendrogram <-hclust(sim_eu^2, method=“complete”) plot(dendrogram) cluster <- cutree(dendrogram, k=3) conf.mat <- table(iris$Species, cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100) new.mat <- data.frame("c1"=conf.mat[,1], "c3"=conf.mat[,3], "c2"=conf.mat[,2]) new.mat <- as.matrix(new.mat) (accuracy <- sum(diag(new.mat))/sum(new.mat) * 100) Cluster 배치 변경
HAC 알고리즘의 활용: complete linkage HAC clustering HAC 알고리즘의 활용: Ward’s method HAC 알고리즘의 활용: complete linkage sim_eu <- dist(myiris, method="euclidean") dendrogram <-hclust(sim_eu^2, method=“ward.D”) plot(dendrogram) cluster <- cutree(dendrogram, k=3) conf.mat <- table(iris$Species, cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100)
HAC 알고리즘의 활용: complete linkage HAC clustering HAC 알고리즘의 활용: centroid linkage HAC 알고리즘의 활용: complete linkage sim_eu <- dist(myiris, method="euclidean") dendrogram <-hclust(sim_eu^2, method=“centroid”) plot(dendrogram) cluster <- cutree(dendrogram, k=3) conf.mat <- table(iris$Species, cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100)
HAC 알고리즘의 활용: complete linkage HAC clustering HAC 알고리즘의 활용: centroid linkage HAC 알고리즘의 활용: complete linkage 거리함수 변경 sim_mi <- dist(myiris, method="minkowski") dendrogram <-hclust(sim_mi^2, method=“centroid”) plot(dendrogram) cluster <- cutree(dendrogram, k=3) conf.mat <- table(iris$Species, cluster) (accuracy <- sum(diag(conf.mat))/sum(conf.mat) * 100)
Density-based clustering DBSCAN: Cluster를 “density-connected set”으로 정의 density: 정해진 반경()내에 데이터의 개수 Data Mining Lab., Univ. of Seoul, Copyright ® 2008
Density-based clustering library(fpc) myiris <- iris[-5] myiris.ds <- dbscan(myiris, eps=0.42, MinPts=5) table(myiris.ds$cluster, iris$Species)
Density-based clustering: Iris 데이터 plot(myiris.ds, myiris)
Density-based clustering: Iris 데이터 plot(myiris.ds, myiris[c(1,4)])
Density-based clustering: Iris 데이터 plotcluster(myiris, myiris.ds$cluster) # projection
Performance Evaluation
Measuring performance for classification confusion matrix
Measuring performance for classification confusion matrix
Estimating future performance Holdout method 일반적으로, 전체데이터의 2/3 => training, 1/3 => testing holdout을 여러 번 반복하여 best model을 취함 test data는 model 생성에 영향을 미치지 않아야 함 하지만, random하게 잡은 training data에 대하여 다수의 model을 생성한 후, test data에 대하여 best model을 찾는 것이어서, hold-out 기법에서의 test performance는 공정하지 않음
Estimating future performance Holdout 기법의 문제점을 해소하기 위해 전체 데이터 집합을 => training, test, validation 집합으로 나눔 Validation data: model 개선 및 최종 선택 시 활용 Test data: 미래 예측 (또는 분류)에 대한 최종 평가단계에서 “1회” 사용
Estimating future performance Validation 집합을 포함한 일반적 비율 (training, test, validation) = (50%, 25%, 25%)
Estimating future performance 최종 모델 선택하기까지 단순 Holdout 기법은 편향된 model을 생성할 수 있음 Repeated Holdout (k-fold cross validation) caret 패지지의 createFolds() 함수 활용 1 2 3 4 5 6 7 8 9 10
Estimating future performance C5.0 decision trees에 대한 k-folds CV 수행 첫번째 fold를 test data로 설정하여, 모델 평가
Estimating future performance lapply()을 사용, C5.0 decision trees에 대한 k-folds CV 자동화
Automated Parameter Tuning
Automated Parameter Tuning train() 함수의 활용 임의의 machine learning 알고리즘을 구동시켜줌 train() 함수의 아래의 요소를 지정해줘야 함 machine learning algorithm model parameters model evaluation criteria
Automated Parameter Tuning train() 함수의 활용: learning algorithm & model parameters
Automated Parameter Tuning Creating a simple tuned model http://topepo.github.io/caret/bytag.html
Automated Parameter Tuning Bootstrap Sampling Training data
Automated Parameter Tuning Testing and Evaluation
Automated Parameter Tuning Customizing the tuning process trainControl() 함수 Train() 함수를 guide하는 configuration 집합을 생성 Resampling 전략, best model 선택 방법 등을 명시
Automated Parameter Tuning Customizing the tuning process Grid 설정 Grid: learning parameter의 조합
Automated Parameter Tuning Customizing the tuning process Training a model Regression: "RMSE“, "Rsquared“ Classification: "Accuracy“, "Kappa"
Meta-Learning
Meta Learning 임의의 machine learning 알고리즘에 대하여 포괄적으로 적용할 수 있는 기술 Ensemble Bagging Boosting Random Forests Semi-Supervised Learning EM Active Learning Selective Sampling
Ensemble Methods Overfitting 가능성 줄임 Model의 bias-variance 줄임 분산처리가 용이
Youngstown State University Bagging Bagging (Bootstrap Aggregation) Sampling with replacement 각 bootstrap sample 집합에 대하여 하나의 (weak) model을 생성 보통 25개의 model을 생성 test data 각각에 대하여 voting을 통해 class 결정 Daniel Spohn Youngstown State University
Bagging ipred 패키지 활용 decision trees에 대한 bagging * train() 함수의 활용 bagged tree 기법 * train() 함수의 활용 10-folds CV
Bagging ipred 패키지 활용 임의의 ML learning 알고리즘의 적용: 예) svmBag
Youngstown State University Boosting Bagging과 달리, 각 데이타들이 learning을 위해 선택되는 확률이 동일하지 않음 순차적으로 weak model을 생성 classification 오류가 나는 데이터는 선택될 weight를 높이고, 그렇지 않은 것은 weight를 낮춤 Daniel Spohn Youngstown State University
AdaBoosting (Adaptive Boosting) Base (weak) classifiers: C1, C2, …, CT Error rate: Importance of a classifier:
AdaBoosting (Adaptive Boosting) Weight 갱신: Classification: 각 base classifier Cj에 j만큼의 classification weight 부여
AdaBoosting (Adaptive Boosting)
AdaBoosting (Adaptive Boosting) AdaBoost.M1: tree-based implementation of AdaBoost for classification
Random Forests Decision Trees-based Ensemble n개의 Bootstrap samples 각 bootstrap sample에서 random하게 m개의 컬럼(독립) 변수 선택하여 tree 생성 Pruning 없음 Classification을 위해서 일반적 Bagging 처럼 voting함
Random Forests Training a model
Random Forests Evaluating the model
EM Algorithm Training data의 부족 문제 EM (Expectation-Maximization) algorithm 적은 양의 labeled training data를 가지고 unlabeled training data를 반복적으로 labeling 즉, labeled data를 중심으로 unlabeled training data를 clustering To resolve this problem in text classifiers, active learning approach was proposed. In the AL approach, the learning module actively choose a set of good examples for labeling instead of randomly selecting them. Another solution is EM approach. By using EM algorithm, we can build more accurate models with only a few labeled training examples. The EM approach has been evaluated to be a practical and excellent solution to the problem of difficulty in obtaining training examples.
EM Algorithm with Naïve Bayes Classification model of NB classifiers - Class prior estimate - Word probability estimate Class prior estimate Word probability estimate Now, let me talk about NB learning framework, briefly. In the NB framework, to classify a given (unknown) document di, the classification module estimates the posterior probability of each class cj by using Bayes’ rule. Then, the document di is classified to the class with the largest posterior. To easily compute this formula, we assume that the terms in a document are mutually independent, and the probability of term occurrence is independent of position within the document. As a result of these assumptions, we have only to calculate these two factors. Consequently, we can say that the classification model of NB is composed of two parameters. One is class prior estimates, and the other is word probability estimates. Let me skip details of this formula because I don’t have enough time.
EM Algorithm with Naïve Bayes Unlabeled documents E-step M-step Initial Training Set Learner Classifier Classified documents Next, let me talk about the basic EM algorithm in the NB learning framework. Initially, the model parameters are generated with only the labeled training examples, D^tl. And then, in E-step, the NB classifier assigns a class label to each of unlabeled documents, based on the current estimated model parameters. Then, in M-step, a new model parameters are generated with this probabilistic labeling and the initial training documents. This process continues until the model parameters does not change (improve),
EM Algorithm upclass 패키지 활용: Iris 데이터
EM Algorithm Data Preparation 전체 data 중에서 1/5 비율의 training data 생성
EM Algorithm Training a model using Labeled and Unlabeled data
EM Algorithm Evaluating the model
EM Algorithm Decision Tree와의 비교
Active Learning Pool-based Active Learning Training을 목적으로 labeling할 데이터를 쌓아두고, 이 중에서 learning에 도움이 되는 데이터만을 선택하여 labeling
Active Learning Uncertainty-based Active Learning 분류결정 boundary 근처에 있는 데이터를 Labeling하는 것이 model 개선에 큰 도움이 됨
Active Learning Uncertainty-based Active Learning Classification Uncertainty의 정의 Xd를 주어진 model에 근거하여 class 집합 C={c1, c2, …, c|c|}의 원소 중의 하나로 분류한다고 가정할 때, 각 class에 속할 확률이 P = {p1, p2, …, p|c|}. Entropy 기반 classification uncertainty