Download presentation
Presentation is loading. Please wait.
Published byJerome Poole Modified 7년 전
0
Global Warming and Green Ship Development
September 17, 2014 Hong-Gi Lee Hyundai Mipo Dockyard
1
Contents Global Warming IMO Regulation Green Ship Developments
Air Pollution Control Future Ship
2
Global Warming UN Intergovernmental Panel on Climate Change(IPCC) Report Aug.2014 Greenhouse gas(GHG) emission raise the risk of “severe, pervasive and irreversible impact over the coming decades” Global warming already causes grain production cutting higher seas devastating heat waves, torrential rain
3
Earth temperature rose by about 0.8oC since the Industrial Revolution
In decades, more than 4oC will be increased Eventually, Arctic and Antarctic ice melting up to 7m sea level rise Flooding World major cities
10
Human emission : dominant cause of the observed warming since the mid-20th century
Primarily carbon dioxide released by burning of fossil fuels like coal, oil, natural gas From 1970 to 2000, GHG emission grew at 1.3% a year From 2000 to 2010, GHG emission grew at 2.2% a year China is accounts for 50% of the world’s coal use
11
Is human emission really responsible for the global warming?
12
Greenland Viking Late 10th Century – Mid 15th Century
13
경신대기근庚辛大飢饉 을해대기근乙亥大飢饉 조선 18대 현종 재위 11년 – 12년 : 庚戌年(1670) – 辛亥年(1671)
지구온도 평균기온 1도 하강 우박, 서리, 가뭄, 홍수, 메뚜기 떼(2월, 윤2월~5월) 태풍, 냉우, 폭우, 전염병(6월~7월) 연중 동시 다발 지진 당시 인구 1500만명 중 100만여명 사망 지옥도, 아귀도 : “임진년 병란도 이것보다는 참혹하지 않았다” 을해대기근乙亥大飢饉 숙종 21-22년 : 경신대기근과 유사한 피해 청나라에서 쌀 3만석 수입, 역부족 Isaac Newton : 1643 – 1727 (“자연철학의 수학적 원리”, 1687)
14
International Greenhouse Gas Emission Rate
15
IMO Regulation of Ship’s Greenhouse Gas Emission
MEPC(Marine Environment Protection Committee) EEDI EEOI SEEMP
16
IMO Regulation of Ship’s Greenhouse Gas Emission
EEDI (Energy Efficiency Design Index) - Ship’s CO2 efficiency EEOI (Energy Efficiency Operational Indicator) - Ship’s energy efficiency in operation SEEMP (Ship Energy Efficiency Management Plan) - Improve the energy efficiency of a ship’s operation - Planning, Implementation, Monitoring, Self-evaluation and improvement
17
IMO Greenhouse Gas Emission Control of Ship Design/Construction/Operation Process
EEDI : Energy Efficiency Design Index, 에너지효율설계지수 EEOI : Energy Efficiency Operation Indicator, 에너지효율운항지표 SEEMP: Ship Energy Efficiency Management Plan, 에너지효율관리계획서
18
IMO Greenhouse Gas Emission Regulation
Phase 0 ( 이후) Phase 1 ( 이후) : 10% 감소 Phase 2 ( 이후) : 20% 감소 Phase 3 ( 이후) : 30% 감소
19
EEDI Reduction (Larger, Slower, New Technology)
DWT
20
Potential CO2 Saving Capacities of Ship Design and Operation
DESIGN (New ships) Saving of CO2/tonne-mile Combined Concept, speed &capability 2~50 10~50% 25~75% Hull and superstructure 2~20 Power and propulsion systems 5~15 Low-carbon fuels Renewable energy 1~10 Exhaust gas CO2 reduction OPERATION (All ships) Fleet management, logistics 5~50 Voyage optimization Energy management (Source: IMO, MEPC 59/INF.10)
21
Tanker/Bulk Carrier
22
Container Carrier
23
표준선 NCR & 연간 연료비 # HFO(600$/ton) 기준
24
Hull Form Design Concept
F.O.C. 최우선 : 선속 및 DWT 감소 Multi draft(Design, Scantling, Ballast, Intermediate 등) 조건에서 최적화 Propeller 직경 증가 : G type engine CFD 활용으로 인한 선수미 형상 변화 : Bulbous bow, Shoulder, Stern 등 저항 뿐만 아니라 자항 성능 우수한 선형 Calm sea 및 rough sea에서도 성능 우수한 선형 ESD 유가 상승으로 pay back time 감소 선주 선호 : ESD 부착 선박 용선 및 resale 시 유리 선형 특성에 따라 효과 제한적 최근 동향 좋은 선형 & 프로펠러 설계 ⇒ ESD 효과 급감 Hull form 최적화 프로그램 개발 : HMD OptiHull Manager Loading 최적화 ⇒ 선체 LWT 감소 ⇒ Cb 감소 ⇒ FOC 감소
25
HMD Eco-Optimized Hull (HMD OptiHull) Manager
자유형상변환(Free Form Deformation) 기법을 이용하여 선형 modeling 시간 단축 예) bulbous bow modeling : manual (약 20분) vs FFD (약 1분) 선형개발 과정(선형 modeling & CFD 계산)의 자동화로 선형개발 시간 단축 예) bulbous bow 최적화 : manual (약 30시간) vs FFD (약 13시간) 유전자 알고리즘을 이용하여 체계적으로 최적 선형개발 최적선형의 지배적인 설계 변수 파악 가능 Propeller, vortex fin/generator 형상 modeling 자동화
26
선형 생성 자동화 선형개선 필요 부위 지정 후 선형 자동 생성 Surface 기반 선형수정
27
선형 생성 및 CFD 계산을 연동시켜 자동화하여 최적 선형 자동 도출
선형 최적화 선형 생성 및 CFD 계산을 연동시켜 자동화하여 최적 선형 자동 도출 선형생성 (FFD) 성능평가 (CFD, WAVIS) 최적화 algorithm(GA) 최적 선형 도출
28
최적 선형 도출 Red : original Green : optimum
29
Propeller Modelling Vortex Generator 효과 :
Propeller, vortex generator(fin)의 크기, 위치 등을 쉽게 조절 가능 CFD 계산용 surface 모델 생성 가능
30
Bulbous Bow 최적화 실적선 적용 사례
Tanker 선형 LBP(m)*B(m)*Td(m) Ori. Rev. CFD 결과 CTM (x 103) 75K PC (219*32.25*12.8) Ori. : 4.048 Rev. : 3.933 (-2.84%) 37K P/C (176*27.4*9.8) Ori. : 3.915 Rev. : 3.855 (-1.53%)
31
LPG 선형 Ori. Rev. CFD 결과 20.6K LPG Ori. : 4.037 Rev. : 3.957 (-1.98%)
LBP(m)*B(m)*Td(m) Ori. Rev. CFD 결과 CTM (x 103) 20.6K LPG (152.2*25.6*8.3) Ori. : 4.037 Rev. : 3.957 (-1.98%) 38K LPG (172*28.4*9.5) Ori. : 3.729 Rev. : 3.711 (-0.48%)
32
B/C, Container 선형 Ori. Rev. CFD 결과 37K B/C Ori. : 3.975 Rev. : 3.824
LBP(m)*B(m)*Td(m) Ori. Rev. CFD 결과 CTM (x 103) 37K B/C (178*27.8*9.8) Ori. : 3.975 Rev. : 3.824 (-3.80%) 1800TEU C/C (172*28.4*9.5) Ori. : 3.950 Rev. : 3.935 (-0.38%)
33
Non-Conventional Bow
34
OSHIMA VLCC Concept Ax Bow
35
Energy Saving Device(ESD)
Rudder Bulb The propeller induced vortices can be partially converted into thrust. Reduce the hub vortex Increased wake fraction Reduced contraction of the propeller slipstream Promas Integrated propeller and rudder system Increased propulsive efficiency Supplier : Rolls-Royce
36
Vortex Fin Mewis Duct Reduction of hull vibration caused by
the propeller induced excitation force Improve wake field Reduced pressure pulse Mewis Duct Improvement the wake field & high propeller loading by duct & fin optimization Increased propulsive efficiency Supplier : Becker Marine Systems
37
37 NPT Propeller NPT = “New Profile Technology”
Smaller optimum diameter Smaller blade surface Significant weight reduction Negative efficiency of propulsion & pressure pulse - Supplier : Stone Marine Propulsion 37
38
ESD Effects (Model Tests)
Ship Type Efficiency Gain Mewis Duct Midsize Tanker 2.6% ~ 9.6% Midsize B/C 3.9% ~ 7.6% Etc 2.4% ~ 5.1% Promas PCTC, Con-Ro, C/C 0.7% ~ 4.4% Rudder Bulb C/C, Midsize Tanker 0.2% ~ 0.9% Vortex Fin Various 0.3% ~ 1.7% NPT Propeller B/C, Midsize Tanker -1.6% ~ 2.5%
39
MAN G Engine 50K PC Longer Stroke Lower RPM Larger Propeller
Higher Efficiency 50K PC 14.5 knots Item 6S50ME-B9.5 6G50ME-B9.5 Bore (mm) 500 Stroke (mm) 2214 2500 NCR (kW X RPM) 5924 X 92.5 5676 X 80.4 SFOC at NCR (g/kW·h) 159.6 157.1 Propeller Diameter (m) 6.4 6.8 DFOC (ton/day) at NCR 22.7 21.4 5.7% Saving!
40
Main Engine(SFOC) Optimization
MAN B&W (Engine Load 별 Optimization) High load (85~100%) Part load (50~85%) Low load (25~70%)
41
WARTSILA (Engine Load 별 Optimization)
Standard tuning (90% ~) Delta tuning (80~90%) Low load tuning ( ~ 80%)
42
HMD 표준선 EEDI P/C
43
HMD 표준선 EEDI B/C
44
HMD 표준선 EEDI LPG/LEG
45
Voyage Optimization Ship’s Monitoring System Optimum Voyage
- Real Time Monitoring (M/E Power, Ship’s Speed, Trim & etc.) Optimum Voyage - Optimum Trim & Speed - Weather and Sea Current Routing - Voyage Analysis <HHI : 최적경제운항 지원시스템> <NAPA for Operations> <NAPA DSME Power> <KR : 최적항로 알고리즘>
46
<출처: RINA, 2010.5 Korean Shipbuilding Advisory Committee 발표자료 中
Voyage Optimization Power Saving Effect through Optimum Trim <출처: RINA, Korean Shipbuilding Advisory Committee 발표자료 中
47
Marpol Annex VI (Air Pollution Prevention)
NOx Limit
48
NOx Control Area Existing Emission Control Area(ECA) ( )
49
Fuel Supply Pressure (bar) Specific Fuel Consumption
Dual Fuel(DF) Engine Supplier Cycle Engine Revolution Model Fuel Supply Pressure (bar) [Gas Fuel] Specific Fuel Consumption Nox Tier III Maintenance Cost Gas Pilot MAN-B&W 2-Stroke Low Speed *-GI (전 Model ) 550 [LNG] Low High ~8 g/kW.h (100% power) 불만족 (SCR or EGR 추가) *-LGI (전 Model) 300 [LPG, Methanol] WARTSILA RT-flex50DF X62 X72 X82 X92 10 bar Medium ~2 g/kW.h 만족 4-Stroke Medium Speed 20DF 34DF 50DF 20 bar
50
Dual Fuel(DF) Engine MAN-B&W Wartsila (2-stroke)
51
Marpol Annex VI (Air Pollution Prevention)
SCR (Selective Catalytic Reduction) Tier III 적용을 위한 NOx 저감 장치 가 격: 180~200만$ (아직 적용 초기 단계로 유동적임) E/R 길이 증가: 약 3 frame # 출처: MAN-B&W
52
Regulation 14 of MARPOL Annex VI 2008
IMO Fuel Sulphur(SOx) Limits Tier SECA* Global Remark Limit Effective I 1.5% - 4.5% Regulation 14 of MARPOL Annex VI 2008 II 1.0% July 2010 3.5% January 2012 III 0.1% January 2015 0.5% January 2020 * SECA : Sulphur Emission Control Area (North sea, USA coast)
53
SOx Control Area (SECA)
* SECA : Sulphur Emission Control Area (North sea, USA coast)
54
SOx Scrubber SOx, Particulate Matter 저감을 위한 EGC(Exhaust Gas Cleaning) System Use water to wash the sulphur out of the exhaust gas 가 격: 약 390만$ 선미 Mooring Deck 상부 A-deck ~ Engine Casing & Funnel 선미 설치 # 출처: Wartsila
55
EU-ZEMShip (2006-2010) in Hamburg
Zero-Emission Ship The first hydrogen fuel-cell 100 passenger ship Efficiency increase target of 40-50%
56
EU-Green Ship Established by - Aalborg Industries - A.P. Moller-Maersk
- MAN Diesel - Odense Steel Shipyard Target - CO2 30%, NOx 90%, SOx 90% Method - Hull form optimization, Cargo optimization - Propulsion system optimization - Waste heat recovery - Route optimization, Operation monitoring system
57
Super EcoShip – Japan (Coastal Shipping, abt 4,200GT)
Reduction of environment impacts - NOx, SOx, CO2, Noise, Vibration High efficiency marine gas turbine and electric propulsion system Podded propulsion with CRP Optimum hull form Reduce CO2 25%, NOx 90%
58
K-Line Drive Green Project
(7500 Pure Car Carrier)
59
Fuel Cell (연료 전지) 개발 현황 Wartsila : 20 kW Test 중, 250 kW 장기 목표
60
US Ship Service Fuel Cell (SSFC) Project
Demonstration(500 kW) 최종 목표 - 2.5 MW 용량 - Fuel Efficiency 70% - 생산단가 1200$/kW
61
Hyundai Fuel Cell Tucson
Hydrogen fuel cell Lithium-polymer battery with 100kW power RPM About 426km cruising range For $21,000! (3 year lease only!)
62
Future Ship Technology
63
NYK SuperEco Ship 2030
64
THANK YOU!
Similar presentations