Download presentation
Presentation is loading. Please wait.
1
Machine Learning to Deep Learning_2
Tutorial code: Jemin Lee Hompage: 역사 알고리즘 약간은 깊이 있는 이해 그것을 통한 실제 구현 과 응용 시스템 Area에서의 Deep-Learning
2
Table of Contents Fundamental Machine Learning (1일차)
Linear Regression: Gradient Descent Algorithm (optimization) Logistic Regression (Single Neuron=Perceptron): Sigmoid (Logistic function), Convexity, Cross Entropy, Decision Boundary Multiple Perceptron (Hidden Layer): Backpropagation algorithm Deep Neural Network Breakthrough (2-3일차) Rebirth of Neural Network, renamed DNN TensorFlow Basic DNN, ReLU, Pre-training, Dropout Convolutional Neural Network (CNN) How to apply DNN into real world problem (4일차) Use-case: smarttention 2016
3
Deep Learning Framework
4
왜 TensorFlow 인가?
5
Large-Scale Deep Learning With TensorFlow, JeffDean 2016
6
Large-Scale Deep Learning With TensorFlow, JeffDean 2016
7
Large-Scale Deep Learning With TensorFlow, JeffDean 2016
8
Architecture Large-Scale Deep Learning With TensorFlow, JeffDean 2016
9
Portable & Scalable Large-Scale Deep Learning With TensorFlow, JeffDean 2016
10
How is TensorFlow used at Google?
Recognizing Images with Inception Voice Recognition Smart reply in inbox by Gmail Large-Scale Deep Learning With TensorFlow, JeffDean 2016
11
실습: Basic TensorFlow 역사 알고리즘 약간은 깊이 있는 이해 그것을 통한 실제 구현 과 응용
시스템 Area에서의 Deep-Learning
12
Graph, Node, Edge 선언부와 실행부가 다름 코드 위치
“앞으로 어떻게 동작 할 것이다”라는 계획을 Graph로 표현한 것이 TensorFlow 이다. Operation: 동작을 정의 Node: Operation 정의 포함 Edge: node와 node를 연결함. 코드 위치 0.2.Basic/Basic Tutorial.ipynb
13
실습2: MNIST 역사 알고리즘 약간은 깊이 있는 이해 그것을 통한 실제 구현 과 응용
시스템 Area에서의 Deep-Learning
14
출처: 모두를 위한 머신러닝 시즌1, 김성훈 교수님
15
Coursera, Machine Learning, Andrew Ng
16
Diagnosing bias vs. variance
High Bias problem == underfitting High variance problem == overfitting Coursera, Machine Learning, Andrew Ng
17
Coursera, Machine Learning, Andrew Ng
18
Learning curves[1/3] Coursera, Machine Learning, Andrew Ng
19
Learning curves[2/3] Coursera, Machine Learning, Andrew Ng
20
Learning curves[3/3] Coursera, Machine Learning, Andrew Ng
21
Summarized bias vs. variance
Coursera, Machine Learning, Andrew Ng
22
Coursera, Machine Learning, Andrew Ng
23
코드 위치 al_DNN.ipynb
24
구현 내용 기본적인 MLP 구현 11-layer MLP with ReLU Pre-training and Dropout
One hidden layer Testing accuracy: ~92% 11-layer MLP with ReLU ReLU, Sigmoid, Softmax Testing accuracy: ~97% Pre-training and Dropout Xavier init. and new regularization Testing accuracy: ~99% Convolutional Neural Network Testing accuracy: ?%
Similar presentations