Presentation is loading. Please wait.

Presentation is loading. Please wait.

C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005

Similar presentations


Presentation on theme: "C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005"— Presentation transcript:

1 C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005
CHAP 3:배열, 구조체, 포인터 C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005

2 배열이란? 같은 형의 변수를 여러 개 만드는 경우에 사용 반복 코드 등에서 배열을 사용하면 효율적인 프로그래밍이 가능
int A0, A1, A2, A3, …,A9; int A[10]; 반복 코드 등에서 배열을 사용하면 효율적인 프로그래밍이 가능 예) 최대값을 구하는 프로그램: 만약 배열이 없었다면? 1 2 3 4 5 6 7 8 9 tmp=score[0]; for(i=1;i<n;i++){ if( score[i] > tmp ) tmp = score[i]; }

3 배열 ADT 배열: <인덱스, 요소> 쌍의 집합 인덱스가 주어지면 해당되는 요소가 대응되는 구조 배열 ADT
객체: <인덱스, 요소> 쌍의 집합 연산:   ▪ create(n) ::= n개의 요소를 가진 배열의 생성.  ▪ retrieve(A, i) ::= 배열 A의 i번째 요소 반환.  ▪ store(A, i, item) ::= 배열 A의 i번째 위치에 item 저장. 요소 인덱스

4 1차원 배열 int A[6]; A[0] A[1] A[2] A[3] A[4] A[5] base base+sizeof(int)

5 2차원 배열 int A[3][4]; 실제 메모리안에서의 위치 A[2][0] A[2][1] A[2][2] A[1][0]
A[1][3] 실제 메모리안에서의 위치

6 배열의 응용: 다항식 다항식의 일반적인 형태 프로그램에서 다항식을 처리하려면 다항식을 위한 자료구조가 필요-> 어떤 자료구조를 사용해야 다항식의 덧셈, 뺄셈,곱셈, 나눗셈 연산을 할때 편리하고 효율적일까? 배열을 사용한 2가지 방법 다항식의 모든 항을 배열에 저장 다항식의 0이 아닌 항만을 배열에 저장

7 다항식 표현 방법 #1 모든 차수에 대한 계수값을 배열로 저장 하나의 다항식을 하나의 배열로 표현 10 6 3 coef 1 2
6 3 1 2 4 5 7 8 9 typedef struct { int degree; float coef[MAX_DEGREE]; } polynomial; polynomial a = { 5, {10, 0, 0, 0, 6, 3} };

8 다항식 표현 방법 #1(계속) 장점: 다항식의 각종 연산이 간단해짐 단점: 대부분의 항의 계수가 0이면 공간의 낭비가 심함.
예) 다항식의 덧셈 연산 while( Apos<=A.degree && Bpos<=B.degree ){ if( degree_a > degree_b ){ // A항 > B항 C.coef[Cpos++]= A.coef[Apos++]; degree_a--; } else if( degree_a == degree_b ){ // A항 == B항 C.coef[Cpos++]=A.coef[Apos++]+B.coef[Bpos++]; degree_a--; degree_b--; else { // B항 > A항 C.coef[Cpos++]= B.coef[Bpos++]; degree_b--;

9 다항식 표현 방법 #2 다항식에서 0이 아닌 항만을 배열에 저장 (계수, 차수) 형식으로 배열에 저장
(예) 10x5+6x+3 -> ((10,5), (6,1), (3,0)) 하나의 배열로 여러 개의 다항식을 나타낼 수 있음. struct { float coef; int expon; } terms[MAX_TERMS]={ {10,5}, {6,1}, {3,0} }; 3 8 1 7 10 2 4 5 6 9 A B avail coef expon terms

10 다항식 표현 방법 #2(계속) 장점: 메모리 공간의 효율적인 이용 단점: 다항식의 연산들이 복잡해진다(프로그램 3.3 참조).
(예) 다항식의 덧셈 A=8x3+7x+1, B=10x3+3x2+1, C=A+B A B avail 1 2 3 4 5 6 7 8 9 10 8 7 1 10 3 1 coef 3 1 3 2 expon A B C avail 1 2 3 4 5 6 7 8 9 10 8 7 1 10 3 1 18 3 7 2 coef 3 1 3 2 3 2 1 expon

11 다항식 표현 방법 #2(계속) // C = A + B void poly_add2(int As, int Ae, int Bs, int Be, int *Cs, int *Ce) { float tempcoef; *Cs = avail; while( As <= Ae && Bs <= Be ) switch(compare(terms[As].expon,terms[Bs].expon)){ case '>': // A의 차수 > B의 차수 attach(terms[As].coef, terms[As].expon); As++; break; case '=': // A의 차수 == B의 차수 tempcoef = terms[As].coef + terms[Bs].coef; if( tempcoef ) attach(tempcoef,terms[As].expon); As++; Bs++; break; case '<': // A의 차수 < B의 차수 attach(terms[Bs].coef, terms[Bs].expon); Bs++; break; } // A의 나머지 항들을 이동함 for(;As<=Ae;As++) // B의 나머지 항들을 이동함 for(;Bs<=Be;Bs++) *Ce = avail -1;

12 희소행렬 배열을 이용하여 행렬(matrix)를 표현하는 2가지 방법 희소행렬: 대부분의 항들이 0인 배열
(1) 2차원 배열을 이용하여 배열의 전체 요소를 저장하는 방법 (2) 0이 아닌 요소들만 저장하는 방법 희소행렬: 대부분의 항들이 0인 배열

13 희소행렬 표현방법 #1 2차원 배열을 이용하여 배열의 전체 요소를 저장하는 방법 A= B=
장점: 행렬의 연산들을 간단하게 구현할 수 있다. 단점: 대부분의 항들이 0인 희소 행렬의 경우 많은 메모리 공간 낭비 2 1 5 4 6 3 9 8 7 7 8 9 5 1 2 3 A= B=

14 희소행렬 표현방법 #2 0이 아닌 요소들만 저장하는 방법 A= B= 장점: 희소 행렬의 경우, 메모리 공간의 절약
단점: 각종 행렬 연산들의 구현이 복잡해진다. 2 5 6 7 1 4 9 3 8 A= B=

15 구조체 구조체(structure): 타입이 다른 데이터를 하나로 묶는 방법
배열(array): 타입이 같은 데이터들을 하나로 묶는 방법 구조체 배열 필드 1 char carray[100]; struct example { char cfield; int ifield; float ffield; double dfield; }; struct example s1;

16 구조체의 사용예 구조체의 선언과 구조체 변수의 생성 typedef을 이용한 구조체의 선언과 구조체 변수의 생성
struct person { char name[10]; // 문자배열로 된 이름 int age; // 나이를 나타내는 정수값 float height; // 키를 나타내는 실수값 }; struct person a; // 구조체 변수 선언 typedef을 이용한 구조체의 선언과 구조체 변수의 생성 typedef struct person { char name[10]; // 문자배열로 된 이름 int age; // 나이를 나타내는 정수값 float height; // 키를 나타내는 실수값 } person; person a; // 구조체 변수 선언

17 구조체의 대입과 비교 연산 구조체 변수의 대입: 가능 구조체 변수끼리의 비교: 불가능 struct person {
char name[10]; // 문자배열로 된 이름 int age; // 나이를 나타내는 정수값 float height; // 키를 나타내는 실수값 }; main() { person a, b; b = a; // 가능 } 구조체 변수끼리의 비교: 불가능 main() { if( a > b ) printf("a가 b보다 나이가 많음"); // 불가능 }

18 자체참조 구조체 자체 참조 구조체(self-referential structure): 필드중에 자기 자신을 가리키는 포인터가 한 개 이상 존재하는 구조체 연결 리스트나 트리에 많이 등장 typedef struct ListNode { char data[10]; struct ListNode *link; } ListNode;

19 포인터(pointer) 포인터: 다른 변수의 주소를 가지고 있는 변수 포인터가 가리키는 내용의 변경: * 연산자 사용 주소
26 ‘A’ 변수 a 주소 포인터 p 포인터: 다른 변수의 주소를 가지고 있는 변수 char a='A'; char *p; p = &a; 포인터가 가리키는 내용의 변경: * 연산자 사용 26 ‘B’ 변수 a 주소 포인터 p *p= 'B';

20 포인터와 관련된 연산자 & 연산자: 변수의 주소를 추출 * 연산자: 포인터가 가리키는 곳의 내용을 추출 26 &a *p ‘A’
int a; // 정수 변수 선언 int *p; // 정수 포인터 선언 int **pp; // 정수 포인터의 포인터 선언 p = &a; // 변수 a와 포인터 p를 연결 pp = &p; // 포인터 p와 포인터의 포인터 pp를 연결

21 디양한 포인터 포인터의 종류 포인터의 형변환: 필요할 때마다 형변환하는 것이 가능하다.
void *p; // p는 아무것도 가리키지 않는 포인터 int *pi; // pi는 정수 변수를 가리키는 포인터 float *pf; // pf는 실수 변수를 가리키는 포인터 char *pc; // pc는 문자 변수를 가리키는 포인터 int **pp; // pp는 포인터를 가리키는 포인터 struct test *ps; // ps는 test 타입의 구조체를 가리키는 포인터 void (*f)(int) ; // f는 함수를 가리키는 포인터 포인터의 형변환: 필요할 때마다 형변환하는 것이 가능하다. void *p; pi=(int *) p;

22 함수의 파라미터로서의 포인터 함수안에서 파라미터로 전달된 포인터를 이용하여 외부 변수의 값 변경 가능
void swap(int *px, int *py) { int tmp; tmp = *px; *px = *py; *py = tmp; } main() int a=1,b=2; printf("swap을 호출하기 전: a=%d, b=%d\n", a,b); swap(&a, &b); printf("swap을 호출한 다음: a=%d, b=%d\n", a,b);

23 배열과 포인터 배열의 이름: 사실상의 포인터와 같은 역할 컴파일러가 배열의 이름을 배열의 첫번째 주소로 대치 10 A[0] A
14 A[1] 18 A[2] 22 A[3] 26 A[4] 30 A[5] 컴파일러가 배열의 이름을 배열의 첫번째 주소로 대치

24 구조체의 포인터 구조체의 요소에 접근하는 연산자: -> 98 2 s.I = ps->i ps 3.14
s.f = ps->f main() { struct { int i; float f; } s, *ps; ps = &s; ps->i = 2; ps->f = 3.14; }

25 포인터의 포인터 56 26 ‘A’ 변수 a 포인터 p 89 포인터의 포인터 pp int a; // 정수 변수 변수 선언
int *p; // 정수 포인터 선언 int **pp; // 정수 포인터의 포인터 선언 p = &a; // 변수 a와 포인터 p를 연결 pp = &p; // 포인터 p와 포인터의 포인터 pp를 연결

26 포인터 연산 포인터에 대한 사칙연산: 포인터가 가리키는 객체단위로 계산된다. 10 A[0] p 14 A[1] 18 A[2]
p+1 // 포인터 p가 가리키는 객체의 바로 뒤 객체 p-1 // 포인터 p가 가리키는 객체의 바로 앞 객체 10 A[0] p 14 A[1] 18 A[2] 22 A[3] 26 A[4] 30 A[5] p+1 p-1

27 포인터 사용시 주의할 점 포인터가 아무것도 가리키고 있지 않을 때는 NULL로 설정 초기화가 안된 상태에서 사용 금지
int *pi=NULL; 초기화가 안된 상태에서 사용 금지 main() { char *pc; // 포인터 pi는 초기화가 안되어 있음 *pc = 'E’; // 위험한 코드 } 포인터 타입간의 변환시에는 명시적인 타입 변환 사용 int *pi; float *pf; pf = (float *)pi;

28 동적 메모리 할당 프로그램이 메모리를 할당받는 방법 정적 메모리 할당 정적 메모리 동적 메모리 할당
메모리의 크기는 프로그램이 시작하기 전에 결정 프로그램의 수행 도중에 그 크기가 변경될 수는 없다. 만약 처음에 결정된 크기보다 더 큰 입력이 들어온다면 처리하지 못할 것이고 더 작은 입력이 들어온다면 남은 메모리 공간은 낭비될 것이다. (예) 변수나 배열의 선언 int buffer[100]; char name[] = “data structure"; 프로그램의 실행 도중에 메모리를 할당받는 것 필요한 만큼만 할당을 받고 또 필요한 때에 사용하고 반납 메모리를 매우 효율적으로 사용가능 메모리 200바이트가 필요한데…. 운영체제 프로그램

29 동적 메모리 할당 전형적인 동적 메모리 할당 코드 동적 메모리 할당 관련 라이브러리 함수
main() { int *pi; pi = (int *)malloc(sizeof(int)); // 동적 메모리 할당 ... … // 동적 메모리 사용 free(pi); // 동적 메모리 반납 } 동적 메모리 할당 관련 라이브러리 함수 malloc(size) // 메모리 할당 free(ptr) // 메모리 할당 해제 sizeof(var) // 변수나 타입의 크기 반환(바이트 단위)

30 동적 메모리 할당 라이브러리 malloc(int size) size 바이트 만큼의 메모리 블록을 할당
(char *)malloc(100) ; /* 100 바이트로 50개의 정수를 저장 */ (int *)malloc(sizeof(int));/* 정수 1개를 저장할 메모리 확보*/ (struct Book *)malloc(sizeof(struct Book))/* 하나의 구조체 생성 */ free(void ptr) ptr이 가리키는 할당된 메모리 블록을 해제 sizeof 키워드 변수나 타입의 크기 반환(바이트 단위) size_t i = sizeof( int ); // 4 struct AlignDepends { char c; int i; }; size_t size = sizeof(struct AlignDepends); // 8 int array[] = { 1, 2, 3, 4, 5 }; size_t sizearr = sizeof( array ) / sizeof( array[0] ); // 20/4=5

31 동적 메모리 할당 예제 struct Example { int number; char name[10]; };
void main() { struct Example *p; p=(struct Example *)malloc(2*sizeof(struct Example)); if(p==NULL){ fprintf(stderr, "can't allocate memory\n") ; exit(1) ; } p->number=1; strcpy(p->name,"Park"); (p+1)->number=2; strcpy((p+1)->name,"Kim"); free(p);


Download ppt "C로 쉽게 풀어쓴 자료구조 © Copyright 생능출판사 2005"

Similar presentations


Ads by Google