Presentation is loading. Please wait.

Presentation is loading. Please wait.

Variables Observation

Similar presentations


Presentation on theme: "Variables Observation"— Presentation transcript:

1 Variables Observation
Variable stars Variables Observation

2 변광성 명명 독일 천문학자 : Friedrich Argelander 명명법
 첫 발견  R + 별자리,  다음 S, ...Z, RR, RS, .... ZZ, AA... QZ (총 334) , V345, .... Some varaiable : not follow eg ; d Cephei General Catalog of Variable Stars ; GCVS  ; 4판 ;  별들의 자료 (러시아), 1990 supplements AAVSO (American Association of Variable Star Observers: 미국 변광성 관측 협회  : chart 주기 등의 정보 제공 + 정보 입수 Hippacos satellite photometric database Information Bulletin on Variable Stars IBVS 항가리 부다페스트 콩클리 천문대 Nova : Argelander scheme & discover year  V737 Sgr = N Sgr 1933 SN :year of discovery and a letter  SN 1999c (third)

3 변광성 (intrinsic: pulsations & eruption + extrinsic :geometry )

4 Classical Cepheids Henrietta Leavitt : 20 세기 초 :
SMC : luminosity-period rel  거리 측정 E. Hubble : 세페이드 in 안드로메다 성운  우리은하 밖  Hubble ; more distance gal have higher redshifts universe expanding W Vir & RR Lyrea : pop II Eruptive : novae, SN, recurrent novae, Flare (or UV Ceti) stars, dwarf novae, R Cor Bor (fading) Eclipsing : 주식 & 부식

5 Light curves

6 Light curves

7 Light curves

8 Eclipsing Binaries EA : Algol :two stars revolving each other at a large apart : deep principle min & a shallow secondary min. EB : b Lyrea : two stars, generally giants or supergiants of low density and of unequal size, not very far from each other. mutual attraction ; their light curve rounded, very offen with appreciably secondary min. EC : W UMa : similar to EB, but stars are dwarfs, almost equal size and brightness & very close to each other, even in contact ; two are highly deformed.

9 변광성 선택 변광성의 선택 1. 변광되어도 관측자의 기기로 식별 되는 별 2. 변광 변화를 측정 할 수 있는 별
1. 변광되어도  관측자의 기기로 식별 되는 별 2. 변광 변화를 측정 할 수 있는 별 3. 변광 주기가 관측할 수 있는 기간 안에 3-4회 되는 별 Finding chart 필요 (특히 광전측광) : 변광성 & 비교성들 (같은 CCD 필드 ) Precise photometry & clocking (GPS or computer internal clock better 0.01s ) UT convert to Julian day and fraction : Heliocentric time (geometric to heliocentric) : 8 min heliocentric time = geocentric time – Dt Dt = cos u Cos u = sind sin D + cos d cos D cos (a –A) Dt = in min, a, d = equatorial coord of the star, A,D = equatorial coord of the Sun (assuming a circular orbit for the Earth ; max time error of 17s over a year by neglecting its ellipticity)  Heliocentric JD = HJD

10 일심 시각 별이 황도에 있는 것을 가정 A; 일몰시 별이 자오선상
B: 태양 보다 지구에 초 = 8.316분 = 일 먼저 기록    별이 황도 면이 아닌 위치에서는 보정치가 이보다 작아진다.     일심시각 = 지심시각  -Dt

11 태양의 황경 Q , D 는 각 ED Q가 직각이되는 곳 별빛은 점 D 도착과 동시에 태양에 닿는다.  각 SE Q =u 삼각형 ED Q 에서  ED 는 태양 도달후 지구까지오는 여분의 거리 cos u = ED/E Q = ED /1 AU = 지구까지 이동거리를 천문 단위로 표기  빛이 DE 가는 시간/ Q 에서 E 에 가는 시간 = Dt/8.316  cos u = Dt/8.316 cos u = cos 90 cos (90 - b ) + sin 90 sin (90- b ) cos ( l - q ) cos u= cos b cos ( l -  q ) 황도 좌표 : 별(l,b) 태양 (q, 0)

12 cos u = cos(90 -d ) cos(90 - D) + sin (90- d ) sind(90-D) cos ( a -A)
별의 적도 좌표 (a , d )  태양 (A, D) 로 하면 구면 삼각형 PSQ 에서 cos u = cos(90 -d )  cos(90 - D) + sin (90- d ) sind(90-D) cos ( a -A) cos u = sin d sin D + cos d cos D cos ( a - A)      = sin d sin D + cos d cos D cos a cos A + cos d cos D  sin a sin A       역서에서 매일 태양의 적도 좌표 참조  반복 계산시 태양의 위치를 황경으로  하는 것이 편리하고  황경은 다음 식으로 기술된다.   q = L + (1.915도 도 * T) sin M 도 * sin 2M       여기서 T = (JD )/36525              L =  도 도 * T              M = 도 도 * T 삼각형 VTQ 에서        cos q = cos D cos A                         sin q sin e = sin D                         sin q cos e = cos D sin A cos u = sind sin q sin e + cosd cos a cos q + cosd sina sin q sin e (1월에 5000km 정도 7월 보다 태양에 인접 == 추가 보정 0.008초)

13 관측 1. 3-4 개의 비교성과 함께 관측 ==> 등급 척도(등급계 변환)와 영점 결정 (대기 소광보정)
  개의 비교성과 함께 관측 ==> 등급 척도(등급계 변환)와 영점 결정 (대기 소광보정)   2.  시간 ==> 율리우스 시간으로 (지심 시간을 일심 시간으로)   3. 적절히 보정된 등급과 시간을   4. 예비 관측 곡선에서 근사적 주기를 얻어 연속적인 순환 곡선을 겹쳐서 평균광도곡선을 얻는다.  예비관측곡선의 제1 극대(first max)를 기점 (epoch)으로 정의한다.       극대와 극대 사이의 시간간격을 예비 주기(preliminary period) 로 정한다.       여러 주기에 자료를 한 주기에 겹쳐 놓기 위해  위상을 계산한다.         Ph = (t –E) / p – 정수 (t – E)/p       t 는 관측시간,     p =주기       E ; 기점     정수=기점 이후 순환 회수 

14 관측 자료 변광성 관측 자료

15 광도곡선 광도곡선 (주기 23일적용)

16 정밀한 주기 구하기 예비 주기가 30일이고 4년의 관측 자료가 있다고 하자
기점(epoch) 과 주기(period)는 변광성의 예측위치표(ephemeris)를 구성한다.  예비 주기  p를 잡았을 경우 기점(epoch) E 이후 미래의 극대(극소) 시각은         Tmax(min) = Emax(min) + Np    ( N = 순환주기의 전체 회수)    이 시각을 계산된 극대시각 C 라 하자  실제 관측을 Tmax(min) 이 관측예정기간에 중간이 되도록 계획한다. 이 Tmax(min) 의 값은 N-1과 N+1 로 부터 계산한다. 즉 이것이 관측기간 밤에 오는 때에 관측을 수행한다. 이 시각들은 JD 또는 HJD를사용한다. GCVS 나 다른 사람의 자료를 사용할 때 예측위치표(ephemeris) 가 언제 것인지와 주기의 불확실성을 아는 것이 중요하다. 예비 주기가 30일이고 4년의 관측 자료가 있다고 하자 잘 관측된 극대시각이 여러 개 있다고 하자 최근 관측된 극대 시각이 (E+47p) 보다 24시간 늦었다고 하자 즉 48번째 순환 주기 동안 24 시간이 늦어 졌다면  주기의 보정은 시행 착오법으로 얻거나 축적된 오차 24 시간을 47 순환으로 나눈값이 된다. 즉 분 = 일 이 되므로 새 주기는 일이 된다. 새로운 주기는 관측 극대 시각과 정확히 일치 되야 한다. (O-C) 방법  : 예비 주기에 의한 극대 시각과 관측 극대 시각의 차이

17 Phase-shift diagram Plot of the change in phase against time
Case 1 Assume true period, a , erroneous assumed period p, then change in phase is Df = (t –E)/p –(t-E)/a = (t-E) (a-p)/ap ~ (t-E)/p2 *(a-p) Plot Df against t ; the slope of the line =(a-p)/p2  solve a ( positive slope a>p ) Case 2 : period changing at a constant rate, b & period at time E is a for another time t, period p = a + b (t-E) , true phase at any time is (t-E)/[a + 1/2b(t-E)] since <p> = [a + a +b(t-E)]/2= a +1/2b(t-E) Change in phase : approximately (t small) ; b(t-E)2/2a2 parabolic with t (concave up b >0 ; p increasing, concave down b <0 : p decreasing)

18 Phase shift-2 Case 3: erroneous period and a constant period change ; combine 1+2 ; Approximately, change in phase = (a-p)(t-E)/p2 + b(t-E)2/2p2 quadratic term in t gives the value of b Case 4 :abrupt change in the period  sudden change in slope in the phase-shift diagram, irregular change in p 실제 이 phase-shift diagram 은 observed, O & calculated phases, C 에서 얻어짐 : O : determined from the light curve, C from ephemeris assuming a constant period  O-C diagram : observed –calcualted phase differences against t  true p and period derivative from least-sq ananlysis of the O-C data using one of the eq above  plot mean light curve If a large p derivative & infrequent obs, difficult to interpret O-C diagram.

19 Phase shift Phase shift

20 O-C O-C 도

21 O-C diagram of w Cen O-C

22 O-C To, Po 초기 기원과 예비 주기 , x 순환 회수 Cx = To + x Po dT, dP 보정값
 (To + dT) + x ( Po + dP) = Ox 관측과 예측 사이의 차  O-C = dT + x dP 이를 최소 자승법으로 풀어 dT 와 dP를 구한다. 기원 시각의 초기 결정에 오차가 있는 경우 : 최선의 직선이 원점을 지나는 대신 그 위나 아래에서 수직축과 교차하게 된다. Stroboscopic 효과 = 관측의 규칙성으로 인해 발생되는 가짜 주기    (관측이 년 단위 일 경우 수년의 주기가 되기 쉬우며           매일 관측할 경우 더 짧은 주기가 될 가능성이 높다. ) ===> 다양한 관측시간과 장기 계속되는 관측이 요구된다.

23 Spurious Period 예 : Obs at the same siderial time (meridan crossing) once every clear night for several months  suggest p=30d Then in a single evening obs a large number of obs ever several hours  p much shorter  beating between the obs interval and P  aliasing (most problem when p near one day) Fig 14-5 : Pfalse-1= Ptrue-1 (p in days) 이런 가짜 주기(aliasing)를 방지하려면 관측 시각의 변화를 주고 상당기간 많은 짧은 간격으로 관측을 수행해야 한다. 또한 경도가 다른 지역에서 관측하여 방지할 수도 있다.  Whole Earth Telescope (WET) ; data from several observatories around the world – careful coordination ; same comparison stars and the same filters

24 가짜 주기의 예 Aliasing

25 Other P finding Often noise level comparable with the amplitude of variation, multiple Ps, or sparsely sampled light curve  mathematical p finding algorithms String Methods : P determined for min of Q Q = S(mi –mi+1)2/S(mi –M) : M =mean mag Phase dispersion minimization (PDM) : produce a smoothed light curve for each trial p and calculates the dispersion for each data point.  best p from the smallest total dispersion fig 14.6 Multiple similar Ps : Fourier analysis ; time domain to frequency (1/P) domain by fitting a series of sine functions with different frequencies, amplitude & phases to the observed magnitudes of variables Evenly spaced data: Fast Fourier Transform Unevenly spaced data : Lomb-Scargle Periodogram  produce a power spectrum by plotting the sq of the Fourier amplitude for each frequency Power spectrum display peaks - some peaks correspond to real frequency of star

26


Download ppt "Variables Observation"

Similar presentations


Ads by Google