2012년 2학기 강의노트 비선형유한요소 Chapter 4 Continuum Mechanics Incremental Total and Updated Lagrangian Formulations.

Slides:



Advertisements
Similar presentations
1 Chapter 2 Basic Physics of Semiconductors  2.1 Semiconductor materials and their properties  2.2 PN-junction diodes  2.3 Reverse Breakdown.
Advertisements

오승재. Contents 1. 지정 주제 -Computer Simulation of Darken’s Uphill Diffusion 2. 자유 주제 -Diffusion couple -(Sudoku)
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
디지털 제어 Sun Moon University 1 of 19 목 차 9. Frequency response analysis Kyoung-Chul DIGITAL CONTROL.
1953년 설탕회사로 시작한 제일제당의 영문사명이 CheilJedang Corp.에서 CJ Corp.으로 변경.
이산시스템의 모델 담당교수 : 정보통신공학과 고경철 교수 (cp) ( ) 홈페이지 :
Chapter 9. Magnetic Forces, Materials, and Inductance
The linked movement of house price and stock price with shocks
Sources of the Magnetic Field
스테레오 비젼을 위한 3장 영상의 효율적인 영상정렬 기법
6.9 Redundant Structures and the Unit Load Method
세종대학교 항공우주공학과 유도항법제어연구실
Chapter 4 Microwave Network Analysis
Inversion of Geophysical Data
Chaper 2 ~ chaper 3 허승현 제어시스템 설계.
4. Matlab-Simulink를 이용한 메카니즘 해석
(Numerical Analysis of Nonlinear Equation)
수치해석 6장 예제문제 환경공학과 천대길.
과목 홈페이지  전산학개론 이메일 숙제를 제출할 경우, 메일 제목은 반드시 ‘[전산학개론]’으로 시작.
Problems of Finite Difference Method (유한차분법)
7장 : 캐시와 메모리.
의용생체공학연구소 의학연구원, 서울대학교 이정찬 Ph.D
Numerical Analysis - preliminaries -
Final Examination, 2008 Fluid Mechanics
Introduction.
III. Problems of Second Chapter (Fluid Statics)
Chapter 2 Formulation of the Continuum Mechanics
제 5장. Context-Free Languages
성형성 기초(I).
Internet Computing KUT Youn-Hee Han
광디스크 드라이브 방진설계 순 천 향 대 학 교 기 계 공 학 과 김 국 원.
Realistic Projectile Motion
1 도시차원의 쇠퇴실태와 경향 Trends and Features of Urban Decline in Korea
5. 비제약 최적설계의 수치해법 (Numerical Methods for Unconstrained Optimum Design)
숭실대학교 마이닝연구실 김완섭 2009년 2월 8일 아이디어  - 상관분석에 대한 연구
계수와 응용 (Counting and Its Applications)
Team no.13 Tech TonicS.
Equilibrium of a Particle
4-1 Gaussian Distribution
Parallel software Lab. 박 창 규
PCA Lecture 9 주성분 분석 (PCA)
Structural Dynamics & Vibration Control Lab., KAIST
Mathematical Description of Continuous-Time Signals
Metal Forming CAE Lab., Gyeongsang National University
2차원 절삭역학 [1] 절삭저항과 전단각 The mechanics of chip formation
한국상장 외국기업 Market 확대를 위한 논의
2차원 절삭역학 [1] 절삭저항과 전단각 The mechanics of chip formation
CHAPTER 11. Rotation 병진 운동과 회전 운동 일과 회전 운동 에너지 회전 변수 각 관련 성분은 벡터인가?
3. 원형축의 비틀림 Metal Forming CAE Lab.
시스템 분석 및 설계 글로컬 IT 학과 김정기.
제 세 동.
Signature, Strong Typing
Signature, Strong Typing
자동제어공학 3. 물리적 시스템의 상태방정식 정 우 용.
Fuel Cell FEM & Optimization
이산수학(Discrete Mathematics)
MR 댐퍼의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어
Signature, Strong Typing
7. Quicksort.
점화와 응용 (Recurrence and Its Applications)
물질(Matter)의 이론 (사물의 본질에 대한 의문)
창 병 모 숙명여대 전산학과 자바 언어를 위한 CFA 창 병 모 숙명여대 전산학과
이산수학(Discrete Mathematics)
[CPA340] Algorithms and Practice Youn-Hee Han
우리나라에서 10대로 살아가기 엘리트조 오정희 / 송지선 / 손시하 / 박주현 / 김소현.
경사 식각을 이용한 폴리머 광 스위치 2층 배선 기술
Chapter 2. Coulomb’s Law & Electric Field Intensity
Chapter 4. Energy and Potential
Chapter 7: Deadlocks.
Presentation transcript:

2012년 2학기 강의노트 비선형유한요소 Chapter 4 Continuum Mechanics Incremental Total and Updated Lagrangian Formulations

Basic assumption & concept The solution for time 0, , , … have already been calculated. Hence, in principle, any one of the equilibrium configurations already calculated could be used. ◦ Total Lagrange formulation   All static and kinematic variables are referred to the initial configuration at time 0 ◦ Updated Lagrange formulation   All static and kinematic variables are referred to the last calculated configuration.

Objective of Linearization 선형화를 하는 목적은 다음과 같은 최종적인 형태의 식을 얻기 위함이다. (2.2)식의 형태는 의 상태를 모르기 때문에 미지의 Volume 에 대하여 적분을 할 수 없고, Cauchy stress의 특성상 시간 t 의 값에 증분량을 더할 수가 없기 때문에 쉽게 선형화를 할 수 없다. 참고로 (2.2) 식은 다음과 같으며 시간 의 모든 부분에서 다음의 관계를 만족한다. - Equilibrium   - Compatibility   - The stress-strain law 선형화를 수행하기 위해 기지(旣知)의 reference configuration을 사용하고, energetically conjugate 인 Second Piola-Kirchhoff Stress와 Green-Lagrange strain을 사용하여 (2.2)식을 표현한다.  (2.2), (2.3)으로부터 다음과 같은 기본식을 얻을 수 있으며 (2.2)식과 (4.4), (4.5)식은 완전히 같은 식이다. 

Total and Updated Lagrangian formulation ⅰ) Total Lagrangian ( 4.4 ) ⅱ) Updated Lagrangian ( 4.5 ) 여기서 Total Lagrangian formulation의 선형화 과정은 다음과 같다.  우선 2nd Piola-Kirchhoff Stress 와 Green-Lagrangian strain 는 다음과 같이 증분의 형태로 쓰여질 주 있다.

Linearization of Total Lagrangian formulation ( 4.6 ) : : ( 4.7 ) Known Unknown increments Linear in Nonlinear In 여기서

Linearization of Total Lagrangian formulation Green-Lagrange strain의 variation, 을 증분의 형태로 쓰면 다음과 같다. ( 4.6 ) Make sense physically, because each variation is taken on the d2isplacements at time , with fixed.

Linearization of Total Lagrangian formulation   (4.8), (4.7), (4.6)식을 (4.4)에 대입하여, 정리하면 ( 4.9 ) Highly nonlinear linear known 여기서, is linear in dose not contain is a nonlinear function ( in general ) of is a linear function of Given a variation , the right-handside is known ( is a constant ).  The left-handside contains unknown displacements increments.  All we have done so far is to write the principle of virtual work in terms of and .  The equation of the principle of virtual work is in general a complicated nonlinear function in the unknown displacement increment.  We obtain an approximate equation by neglecting all higher-order terms in (so that only linear terms in remain).  This leads to

Linearization of Total Lagrangian formulation   This process of neglecting  higher order terms is called linearization.   (4.9)식에서 highly nonlinear term인 을 Taylor series를 이용해서 정리하여 선형화 작업을 하면 다음과 같다. linear quadratic known in in   위의 식에서 higher order terms를 무시하고, 와 비교하여 아주 작은 값인 를 무시한다. ( 4.10 ) 여기서,

Linearization of Total Lagrangian formulation ( 4.11 ) when discretized using the finite element method

Linearization of Total Lagrangian formulation 증분형태의 Updated Lagrangian formulation, (4.12), 도 Total Lagrangian의 과정과 같은 방법으로 얻 을 수 있다. ( 4.12 ) An important point is that   because So, we may interpret the right-hand side of (4.11) and (4.12) as an "out-of-valance" virtual work term. ※ Mathematical explanation that   We had If , then the configuration at time is identical to the configuration at time . Hence

Linearization of Updated Lagrangian formulation   It follows that This results makes physical sense because equilibrium was assumed to be satisfied at time .  Hence we can write   We may rewrite the linearized governing equation (4.11) as follows When the linearized governing equation is discretized, we obtain

Linearization of Updated Lagrangian formulation We then use (4.11), (4.12) 관계식은 변위의 증가치를 계산하는데 쓰여지며, 계산된 변위 증가치 는 시간 에서 변위, 변형율, 응력의 근사값을 계산하는데 사용된다. (The relation in (4.11), (4.12) can be employed to calculate an increment in the displacements, which then is used to evaluate approximations to the displacements, strains, and stresses corresponding to time .) 계산된 변위, 응력, 변형율의 근사값을 이용하여 에러, 즉, out of valance virtual work, the difference between internal and external virtual work를 구하면 다음과 같다.   in TL formulation ( 4.13 ) in UL formulation ( 4.14 )

Formulation of Finite Element Matrices   (4.11), (4.12)식을 iteration을 포함한 형태로 쓰면 다음과 같다.   in Total Lagrangian formulation ( 4.15 )   where we used   with initial conditions , ,   in Update Lagrangian formulation ( 4.16 )

Formulation of Finite Element Matrices   where we use   with initial conditions , , ※ Comparison of TL and UL formulations - In the TL formulation, all derivatives are with respect to the initial coordinates whereas in the UL formulation, all derivatives are with respect to the current coordinates. - In the UL formulation we work with the actual physical stresses (Cauchy Stress).

Formulation of Finite Element Matrices   Assuming that the loading is deformation-independent, ( 4.17 )   For a dynamic analysis, the inertia force loading term is ( 4.18 )   If the external loads are deformation-dependent and time step is small enough to have good accuracy ( 4.19 )   and ( 4.20 )

Formulation of Finite Element Matrices   Materially-nonlinear-only analysis : ( 4.21 )   This equation is obtained from the governing TL and UL equations by realizing that, neglecting geometric nonlinearities. ( physical stress )   Implicit time integration ( 4.22 ) Total Lagrange ( 4.23 ) Update Lagrange ( 4.24 ) Material Nonlinear Only ( 4.25 )

Formulation of Finite Element Matrices   The finite element equations corresponding to the continuum mechanics equations are   Materially-Nonlinear-Only analysis Static analysis : ( 4.26 ) Dynamic analysis, implicit time integration : ( 4.27 ) Dynamic analysis, explicit time integration : ( 4.28 )   Total Lagrangian formulation Static analysis : ( 4.29 )

Formulation of Finite Element Matrices Dynamic analysis, implicit time integration : ( 4.30 ) Dynamic analysis, explicit time integration : ( 4.31 ) Updated Lagrangian formulation Static analysis : ( 4.29 ) Dynamic analysis, implicit time integration : ( 4.30 ) Dynamic analysis, explicit time integration : ( 4.31 )

Formulation of Finite Element Matrices The above expression are valid for ∙ a single finite element ( contains the element nodal point displacements ) ∙ a single finite element ( contains all nodal point displacements ) In practice, element matrices are calculated and then assembled into the global matrices using the direct stiffness method.

Formulation of Finite Element Matrices We now concentrate on a single element.   The vector contains the element incremental nodal point displacements. We may write the displacements at any point in the element in terms of the element nodal displacements. ( 4.32 ) Finite element discretization of governing continuum mechanics equations: For all analysis types ( 4.33 ) where we used , is displacements at a point within the element

Formulation of Finite Element Matrices and ( 4.34 ) where Materially-nonlinear-only analysis : Considering an incremental displacements ( 4.35 )

Formulation of Finite Element Matrices where and ( 4.36 ) Total Lagrangian formulation : Considering an incremental displacements ( 4.37 ) where ( 4.38 )

Formulation of Finite Element Matrices where is a matrix containing components of contains components of and ( 4.39 ) where is a matrix containing components of Updated Lagrangian formulation : Considering an incremental displacements ( 4.40 ) where is a matrix containing components of contains components of ( 4.41 )

Formulation of Finite Element Matrices where is a matrix containing components of contains components of and ( 4.42 ) where is a matrix containing components of ※ The finite element stiffness and mass matrices and force vectors are evaluated using numerical integration (as in linear analysis).  In isoparametric finite element analysis we have, schematically, in 2-D analysis ( 4.43 )

Formulation of Finite Element Matrices ( 4.44 ) ( 4.45 )