Sources of the Magnetic Field Chapter 30 Sources of the Magnetic Field
Biot-Savart Law – Equation The observations are summarized in the mathematical equation called the Biot-Savart law: The magnetic field described by the law is the field due to the current-carrying conductor Don’t confuse this field with a field external to the conductor
Permeability of Free Space The constant mo is called the permeability of free space mo = 4p x 10-7 T. m / A
Total Magnetic Field is the field created by the current in the length segment ds To find the total field, sum up the contributions from all the current elements I The integral is over the entire current distribution
가는 직선 도체 주위의 자기장 예제 30.1 x 축을 따라 놓여 있고 일정한 전류 I가 흐르는 가는 직선 도선을 생각하자. 점 P에서의 자기장의 크기와 방향을 구하라. 풀이 점 P로부터 거리 r에 있는 길이 요소 ds로 인한 점 P에서의 자기장은 ds × r의 방향이므로 그림 면에서 나오는 방향이다. 사실상 모든 전류 요소가 그림 면에 있으므로 점 P에서 그림 면 밖으로 향하는 자기장이 발생한다. and
무한히 긴 직선 도선의 경우
for a Curved Wire Segment Find the field at point O due to the wire segment I and a are constants q will be in radians 예제 30.2
for a Circular Loop of Wire 예제 30.2 Consider the previous result, with a full circle q = 2p This is the field at the center of the loop
원형 전류 도선의 축상에서의 자기장 예제 30.3 yz 평면에 위치한 반지름 a의 원형 도선에 전류 I가 흐르는 경우를 생각하자. 중심으로부터 x만큼 떨어진 축상의 점 P에서의 자기장을 계산하라. 풀이 P점에서의 자기장은 x축 성분과 그에 수직한 성분으로 분해할 수 있는데, 수직한 성분은 대칭성 때문에 상쇄된다. 전류 길이 요소 ds와 벡터 r은 수직인 관계에 있다. 이므로
(x ≫ a) 원형 중심에서의 자기장:
예제 30.3
Magnetic Force Between Two Parallel Conductors Two parallel wires each carry a steady current The field due to the current in wire 2 exerts a force on wire 1 of F1 = I1ℓ B2
예제 30.4
Definition of the Ampere The force between two parallel wires can be used to define the ampere When the magnitude of the force per unit length between two long, parallel wires that carry identical currents and are separated by 1 m is 2 x 10-7 N/m, the current in each wire is defined to be 1 A
Magnetic Field of a Wire, 2 Here the wire carries a strong current The compass needles deflect in a direction tangent to the circle This shows the direction of the magnetic field produced by the wire
Ampere’s Law The product of can be evaluated for small length elements on the circular path defined by the compass needles for the long straight wire Ampere’s law states that the line integral of around any closed path equals moI where I is the total steady current passing through any surface bounded by the closed path:
전류가 흐르는 긴 도선에 의한 자기장 예제 30.5 반지름 R인 긴 직선 도선에 그림과 같이 도선의 단면에 균일하게 분포된 정상 전류 I가 흐른다. 도선의 중심으로부터의 거리 r이 r ≥ R 그리고 r < R인 영역에서의 자기장을 구하라. 풀이 r<R, 원 C1을 적분 경로로 선택하면 r>R, 도선 내부의 경우 원 C2를 적분 경로로 선택하면
Field Due to a Long Straight Wire – From Ampere’s Law 예제 30.5 Want to calculate the magnetic field at a distance r from the center of a wire carrying a steady current I The current is uniformly distributed through the cross section of the wire
Field Due to a Long Straight Wire – Results From Ampere’s Law 예제 30.5 Outside of the wire, r > R Inside the wire, we need I’, the current inside the amperian circle
Field Due to a Long Straight Wire – Results Summary 예제 30.5 The field is proportional to r inside the wire The field varies as 1/r outside the wire Both equations are equal at r = R
Ideal Solenoid – Characteristics An ideal solenoid is approached when: the turns are closely spaced the length is much greater than the radius of the turns
Ampere’s Law Applied to a Solenoid, cont. Applying Ampere’s Law gives The total current through the rectangular path equals the current through each turn multiplied by the number of turns
Magnetic Field of a Solenoid, final Solving Ampere’s law for the magnetic field is n = N / ℓ is the number of turns per unit length This is valid only at points near the center of a very long solenoid 길이 20cm이고 지름 1mm도선이 5겹 감긴 솔레노이드에 5A의 전류가 흐를 때 솔레노이드 내부의 자기장의 세기는 얼마인가? ex
Magnetic Field of a Toroid 예제 30.6 Find the field at a point at distance r from the center of the toroid The toroid has N turns of wire
예제 30.7 직사각형 도선 고리를 통과하는 자기선속 Fig. 30-21, p. 850
Gauss’ Law in Magnetism Magnetic fields do not begin or end at any point The number of lines entering a surface equals the number of lines leaving the surface Gauss’ law in magnetism says the magnetic flux through any closed surface is always zero:
자기홀극이 없으므로 (N극과 S극이 항상 함께 있으므로) * 자기의 기본 단위는 자기쌍극자 자기쌍극자와 전기쌍극자의 비교
Magnetic Moments In general, any current loop has a magnetic field and thus has a magnetic dipole moment This includes atomic-level current loops described in some models of the atom This will help explain why some materials exhibit strong magnetic properties