Grain Coarsening at High Temp. annealing:

Slides:



Advertisements
Similar presentations
1 Chapter 2 Basic Physics of Semiconductors  2.1 Semiconductor materials and their properties  2.2 PN-junction diodes  2.3 Reverse Breakdown.
Advertisements

1 As protons are added one by one to the nucleus to build up the elements, electrons are similarly added to these hydrogen-like orbitals. As protons are.
X-Ray Diffraction (XRD) Joo Suk-bae. 회절 (Diffraction) 입자의 진행경로에 틈이 있는 장애물이 있으면 입자는 그 틈을 지나 직선으로 진행한다. 이와 달 리 파동의 경우, 틈을 지나는 직선 경로뿐 아니라 그 주변의.
센서 전자 공학. 자이로스코프 제 13 장 제 13 장 자이로스코프 679 자이로스코프 ( 자이로 ) 는 지구의 회전과 관계없이 높은 확도로 항상 처음에 설정한 일정 방향을 유지하는 성질이 있기 때문에 공간에서 물체의 방위 (orientation) 를 측정하 거나 또는.
2 전기회로의 기초 기초전자회로 PPT. ○ 생체의공학과 송지훈 35%
Second-Phase Shape: Interfacial Energy Effects GP(Guinier- Preston) Zone in Al – Ag Alloys → negligible contribution to the total free energy A.
국제 저명인사 초청 멀티스케일 에너지 강좌 미래창조과학부 글로벌 프론티어 멀티스케일 에너지 시스템 연구단/서울대학교
Chapter 9. Magnetic Forces, Materials, and Inductance
Chapter 6 diffusion. 6.1 Basic Diffusion Process.
Sources of the Magnetic Field
가공역학 Performance evaluation of cemented carbide tools in turning AISI 1010 steel 발표자 : 유승현.
스테레오 비젼을 위한 3장 영상의 효율적인 영상정렬 기법
Problem 2-1 Coincidence site lattice boundary
6.9 Redundant Structures and the Unit Load Method
Chapter 1 Organic Chemistry Electronic Structure 5th Edition and
Journals & Conferences
Distillation 증류 蒸溜 (1) Prof. Hyunsoo Moon
Chaper 2 ~ chaper 3 허승현 제어시스템 설계.
R-value 박판성형 소성변형률비(Plastic Strain Ratio), R은 인장시편의 폭방향 진변형률과 두께방향 변형률의 비로 표시한다.   압연방향과 0˚방향의 시편으로부터 측정한 소성변형률비(R0)는 이고, 압연방향과 90˚방향의 시편에서 측정한 소성변형률비(R90)는.
Nondestructive Material Testing with Ultrasonics
Chapter 3. Energy Bands and Charge Carriers in Semiconductors
분자 동역학 컴퓨팅 전승준 (고려대학교 화학과).
III. 내열/내식강 기술개발 동향.
Application of Acoustic Sensing and Signal Processing for PD Detection in GIS 20003년 05월 10일 이 찬 영.
Composite Coating 변 지 영 한국과학기술연구원 금속공정연구센터.
석유화학근로자 안전교육 교재 6 부식의 원리와 방식 대책 한국산업안전공단 전남동부지도원.
Ch. 7. 자기력과 자성체 자기력 토크 자기적 특성에 따라 매질을 분류  자성체 자기장의 경계조건
분자 동역학 컴퓨팅 전승준 (고려대학교 화학과).
III. Problems of Second Chapter (Fluid Statics)
1.1 General Material Properties Composition Purity
Electrical Properties of Materials (전기물성)
Ch. 5 : Analog Transmission
Chapter 6 Chemical Equilibrium
성형성 기초(I).
Realistic Projectile Motion
제5장 주조공정 (Casting Process) I
제 14 장 거시경제학의 개관 PowerPoint® Slides by Can Erbil
1 도시차원의 쇠퇴실태와 경향 Trends and Features of Urban Decline in Korea
Chapter 2. Finite Automata Exercises
Cluster Analysis (군집 분석)
Topic : (1) 금속재료의 구조와 변형기구 (2) 반도체와 방향성 (3) 금속재료의 응고과정
Chapter 31 Faraday’s Law.
Medical Instrumentation
4-1 Gaussian Distribution
PCA Lecture 9 주성분 분석 (PCA)
제 15 장 거시경제의 측정 PowerPoint® Slides by Can Erbil
Modeling one measurement variable against another Regression analysis (회귀분석) Chapter 12.
Inferences concerning two populations and paired comparisons
Advanced Mechanics Lab.
Physical transformations of pure substances
2차원 절삭역학 [1] 절삭저항과 전단각 The mechanics of chip formation
2차원 절삭역학 [1] 절삭저항과 전단각 The mechanics of chip formation
The normal distribution (정규분포)
Filtered vacuum arc 공정에 있어서 아르곤 가스에 의한 ta-C 박막의 구조 조절
이산수학(Discrete Mathematics)
Two-Particle Problem 좌표변환 2개 이상의 입자 입자들 중심(Center of mass)의 병진운동 &
Gibbs Free Energy, Enthalpy, …
Modeling one measurement variable against another Regression analysis (회귀분석) Chapter 12.
점화와 응용 (Recurrence and Its Applications)
Definitions (정의) Statistics란?
자동제어공학 4. 과도 응답 정 우 용.
이산수학(Discrete Mathematics)
-아/어 드릴까요? 문 열어 드릴까요? 네, 감사합니다. Sogang Korean 2A UNIT 7 “-아/어 드릴까요?”
[CPA340] Algorithms and Practice Youn-Hee Han
Imperfections in Solids (고체의 결함)
Chapter 11. The Uniform Plane Wave
Chapter 2. Coulomb’s Law & Electric Field Intensity
Chapter 4. Energy and Potential
Chapter 1 FLUID PROPERTIES
Presentation transcript:

Grain Coarsening at High Temp. annealing: 줄어드는 결정립에 있는 원자들 입계 에너지에 의해 높은 압력을 받음. 격자로부터 떨어져 나가서 성장하는 결정립의 격자 자리에 다시 붙음. Fir. 3. 23 (a) The atomic mechanism of boundary migration. The boundary migrates to the left if the jump rate from grain 1 → 2 is greater than 2 → 1. Note that the free volume within the boundary has been exaggerated for clarity. (b) Step-like structure where close-packed planes protrude into the boundary.

Grain coarsening at high T, annealing → metastable equil. state : # ↓ , size ↑ curvature ~ ΔP ~Δμ High energy Low energy ← ΔG = 2Vm/r ~ Δμ : effect of pressure difference by curved boundary Work : F dx = (2Vm/r) (dx/Vm) → F = 2/r = ΔG/Vm (by curvature) Gibbs-Thomson Eq. Driving force for grain growth : F 결정립 B로 들어가는 물질의 몰수: 1 (dx/Vm) Fig. 3.25 A boundary separating grains with different free energies is subjected to a pulling force F. Pulling force per unit area of boundary : 물질의 단위체적당 자유에너지 차이

Gibbs-Thompson Equation G of a spherical particle of radius, r G of a supersaturated solute in liquid in equilibrium with a particle of radius, r Equil. condition for open system  should be the same. /mole or / per unit volume r r*: in (unstable) equilibrium with surrounding liquid

* How fast boundary moves ? : Grain Growth Kinetics Grain boundary migration by thermally activated atomic jump * (1) → (2) : Flux (1) atoms in probable site : n1 Vibration frequency : ν1 A2 : probability of being accommodated in grain (2) → A2 n1 ν1 exp(-ΔGa/RT) atom/m2s = J1→2 * (2) →(1) : Flux → A1 n2 ν2 exp[-(ΔGa +ΔG) /RT] = J2→1 (1) (2) When ΔG=0, there is no net boundary movement. A2 n1 ν1≈A1 n2 ν2 = Anν When ΔG >0, there will be a net flux from grain 1 to 2. (A2 n1 ν1≈A1 n2 ν2 = Anν) J1→2 - J2→1 = An νexp(-ΔGa/RT) [1- exp(-ΔG/RT)] (고경각 경계 A1≈A2≈1)

If the boundary is moving with a velocity v, the above flux must also be equal to ? J=c•v → v/( Vm/Na ) (Vm/Na : atomic volume) If ΔG is small [ΔG <<RT] exp (- ΔG/RT)항을 Tayler 전개 Jnet = A2n1 ν1exp(-ΔGa/RT) [ΔG/RT] (atom/m2s)= v(Vm/Na) v ~ ΔG/Vm driving force 입계 이동 속도 → F = ΔG/Vm M: 입계 이동도 단위 구동력하에서의 속도 M : mobility = velocity under unit driving force ~ exp (-1/T) The boundary migration is a thermally activated process.

αM(2/D) = dD/dt (α = proportionality const ~1) Kinetic of grain growth * driving force F = ΔG/Vm → v = M (ΔG/Vm) M : exponentially increase with temp. v : relation to grain coarsening 입계 성장속도 D Mean grain size : D Mean radius of curvature of boundary : r if D ∝ r, Mean velocity : v = αM (ΔG/Vm) = dD/dt (ΔG = 2γVm/r) αM(2/D) = dD/dt (α = proportionality const ~1) dD/dt (rate of grain growth) ~ 1/D , exponentially increase with T

→ D2 = Do2 + kt → ∫D dD = ∫ 2αMdt → ½ (D2 - Do2) = 2αMγt → (D2 - Do2) = 4αMγt = kt → D2 = Do2 + kt Do D r = average radius of particles fv = volume fraction of particles if Do ≈ 0 → D = k’t1/2 → D = k’tn (experimental : n << ½, ½ at 순금속 or only high temp.)

Schematic diagram illustrating the possible interactions of second phase particles and migrating grain boundaries.

Pinning by particle

Effect of Second-Phase Particles Interaction with particles Zener Pinning Derive the expression for the pinning effect of grain boundary migration by precipitates. = AB 원의 둘레 단일 입자로 인해 생긴 힘의 최대값

Interaction with particles Zener Pinning fv = volume fraction of randomly distributed particles of radius r Ntotal = number of particles per unit volume If the boundary is essentially planar, Ninteract = 2rNtotal = 3fv/2r2 Given the assumption that all particles apply the maximum pinning force, the total pinning pressure This force will oppose the driving force for grain growth, Only particles within one radius (solid circles) can intersect a planar boundary

Interaction with particles Zener Pinning This force will oppose the driving force for grain growth, For fine grain size → a large volume fraction of very small particles → F = 2/r = ΔG/Vm (by curvature) * Effect of second-phase particles on grain growth → D = k’tn : 미세한 결정립이 안정화되려면 매우 작은 입자 (r )가 많아야 한다 (f ).

Whose mobility would be high between special and random boundaries? 입계구조의 고찰을 통해 High energy G.B. => Open G.B. structure => High mobility Low energy G.B. => closed (or dense) G.B. structure => Low mobility 같은 구동력 Ex) 정합 쌍정립계 But, Ideal Real 특정한 경우 특수 입계가 무질서한 고경각 입계보다 이동도가 크다. Why? 불순물의 양과 거의 무관 합금원소의 양이 증가함에 따라 급격히 감소 불순물의 양에 따라 민감하게 변함 불순물과 입계의 상호작용이 입계의 종류에 따라 변화 Migration rate of special and random boundaries at 300 oC in zone-refined lead alloyed with tin under equal driving forces

Solute drag effect In general, Gb and mobility of Pure metal decreases on alloying. 편석 경향을 나타내는 Gb 는 기지 고용도 감소할 수록 증가 ~Impurities tend to stay at the GB. Generally, Gb, tendency of seg- regation, increases as the matrix solubility decreases. Xb/X0: GB enrichment ratio - 온도 증가시 입계 편석 감소 Gb Xb Mobility of G.B. Alloying elements affects mobility of G.B. X0 : matrix solute concentration/ Xb : boundary solute concentration Gb : free energy reduced when a solute is moved to GB from matrix. 양수, 용질원자와 기지원자와의 원자크기차 클수록 증가, 용질원자간 결합력 감소하면 증가

Normal Grain Growth Grain boundary moves to reduce area and total energy Large grain grow, small grains shrink Average grain size increases Little change of size distribution

Abnormal Grain Growth - Local breaking of pinning by precipitates Discontinuous grain growth of a few selected grains - Local breaking of pinning by precipitates - Anisotropy of grain boundary mobility - Anisotropy of surface & grain boundary energy - Selective segregation of impurity atoms - Inhomogeneity of strain energy Bimodal Size distribution

Abnormal Grain Growth ex) Si steel = discontinuous grain growth or secondary recrystallization

3.4 Interphase Interfaces in Solids coherent, semicoherent incoherent Interphase boundary - different two phases : different crystal structure different composition 3.4.1 Coherent interfaces Perfect atomic matching at interface 화학적인 것은 무시한 채 계면 양쪽 상이 같은 원자배열을 갖고, 두 결정이 특정한 방위를 이루고 있는 경우 α β Fig. 3.32 Strain-free coherent interfaces. (a) Each crystal has a different chemical composition but the same crystal structure. (b) The two phases have different lattices

Which plane and direction will be coherent between FCC and HCP? 3.4.1 Coherent interfaces Which plane and direction will be coherent between FCC and HCP? : Interphase interface will make lowest energy and thereby the lowest nucleation barrier ex) hcp silicon-rich  phase in fcc copper-rich  matrix of Cu-Si alloy → the same atomic configuration → Orientation relation 원자간 거리도 동일 Cu Si - of Cu-Si ~ 1 mJm-2 In general,  (coherent) ~ 200 mJm-2 γcoherent = γstructure + γchemical = γchemical Fig. 3.33 The close-packed plane and directions in fcc and hcp structures.  (coherent) = ch hcp/ fcc 계면의 경우: 정합을 이루는 면은 하나만 존재

When the atomic spacing in the interface is not identical between the adjacent phase, what would happen? Lattice가 같지 않아도 Coherent interface를 만들 수 있다. → lattice distortion → Coherency strain → strain energy Fig. 3.34 A coherent interface with slight mismatch leads to coherency strains in the adjoining lattices. 정합 계면에서 형성된 strain은 계의 총 에너지를 증가시킴. How can this coherent strain can be reduced?

→ “misfit dislocations” If coherency strain energy is sufficiently large, → “misfit dislocations” → semi-coherent interface δ가 작다면, b: Burgers vector of disl. [b=(dα + dβ )/2] Fig. 3.35 A semicoherent interface. The misfit parallel to the interface is accommodated by a series of edge dislocations.

(2) Semicoherent interfaces 전위의 burgers vector (2) Semicoherent interfaces st → due to structural distortions caused by the misfit dislocations dα < dβ In general,  (semicoherent) ~ 200~500 mJm-2 semi 불일치 전위 간격이 감소함에 따라 변형지역이 중복되어 서로 상쇄됨. γ δ = (dβ - dα)/ dα : misfit → D vs. δ vs. n (n+1) dα = n dβ = D δ = (dβ/ dα) – 1, (dβ/ dα) = 1 + 1/n = 1 + δ → δ = 1/n D = dβ / δ ≈ b / δ [b=(dα + dβ )/2] 0.25 δ 1 dislocation per 4 lattices δ=4 δ가 작다면, 전위의 burgers vector

3) Incoherent Interfaces ~ high angle grain boudnary 1) δ > 0.25 2) different crystal structure (in general) 격자가 잘 일치하는 것이 불가능해짐 In general,  (incoherent) ~ 500~1000 mJm-2 incoherent Fig. 3.37 An incoherent interface.

4) Complex Semicoherent Interfaces If bcc  is precipitated from fcc , which interface is expected? Which orientation would make the lowest interface energy? Nishiyama-Wasserman (N-W) Relationship Kurdjumov-Sachs (K-S) Relationships (두 방위관계의 유일한 차이점은 조밀면에서 5.26°만큼 회전시킨 것임)

Complex Semicoherent Interfaces Semicoherent interface observed at boundaries formed by low-index planes. (atom pattern and spacing are almost equal.) N-W relationship 격자가 잘 일치하는 부분: 점선 영역으로 제한됨. 이러한 넓은 계면은 부정합 임. K-S 방위관계에서도 유사한 거동 나타남. Fig. 3.38 Atomic matching across a (111)fcc/(110)bcc interface bearing the NW orientation relationship for lattice parameters closely corresponding to the case of fcc and bcc iron.

Complex Semicoherent Interfaces The degree of coherency can, however, be greatly increased if a macroscopically irrational interface is formed. The detailed structure of such interfaces is , however, uncertain due to their complex nature.