Polymers and Plastics.

Slides:



Advertisements
Similar presentations
ํ™”ํ•™๋ฐ˜์‘ ์†๋„๋ก  Chapter 14. ํ™”ํ•™๋ฐ˜์‘์†๋„๋ก  ์—ด์—ญํ•™์  ๊ด€์  โ€“ ์ด ๋ฐ˜์‘์ด ์ผ์–ด๋‚ ๊นŒ ? ์†๋„๋ก ์  ๊ด€์  โ€“ ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ ๋ฐ˜์‘์ด ์ง„ํ–‰๋ ๊นŒ ? ๋ฐ˜์‘์†๋„๋Š” ๋ฐ˜์‘๋ฌผ๊ณผ ์ƒ์„ฑ๋ฌผ์˜ ๋†๋„๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ๊ฒƒ์„ ๊ฐ€์ง€๊ณ  ๋‚˜ํƒ€๋‚ธ๋‹ค (M/s). A B rate = - ๏„ [A] ๏„t๏„t.
Advertisements

๋””์ŠคํŽœ์„œ์‹ ์šฉ๊ธฐ 2 ์กฐ ์‹ ์›์‹ ๋ฐ•์ƒ์œค ์ตœ์„ฑ์šฑ ๋ณ€ํƒœํ›ˆ ์ „ํ˜„์šฑ ์ •๊ด‘์˜ ์œค์ง€์› ์ด์˜์žฌ ์ •ํƒœ์˜.
์ฝœ๋ผ์— ์šฐ์œ ๋ฅผ๋„ฃ์œผ๋ฉด ? 1 ์กฐ ( ์ด์ฃผ์ƒ, ์ด๋ฌธ์ˆ˜, ์ •์ฃผํ˜„, ํ™ํฌ์ง„ ). - ๋ชจ๋‘ ๋ช… / ์ง€์€์ด์œ  - ํƒ๊ตฌ์ฃผ์ œ / ํƒ๊ตฌ๋™๊ธฐ - ์—ญํ• ๋ถ„๋‹ด - ์ง„ํ–‰๊ณผ์ • / ์‹คํ—˜๋‚ด์šฉ - ๊ด€๋ จ์ง์—… ์ฐจ๋ก€.
Copyright ยฉ Houghton Mifflin Company. All rights reserved.1 | 1 CHAPTER ONE Bonding and Isomerism.
ENPLA ๋ถ„๋ฅ˜ ๊ตฌ ๋ถ„ ์ˆ˜ ์ง€ ์ข… ๋ฅ˜ ์—ฐ์† ์‚ฌ์šฉ ์˜จ๋„ ์ธ์žฅ ๊ฐ•๋„ ๊ตญ๋‚ด ์ˆ˜์š” ๆบ– ENPLA โ–ทABS โ–ท๋ณตํ•ฉ PP 100 โ„ƒ ์ดํ•˜
ํด๋ฆฌํŽ˜๋‹์„คํฐ (Polyphenylsulfone)
History Uses Big Six Special Plastics Problems and Issues
๊ณ ๋ถ„์ž ๋ฌผ์„ฑ (์ž๋ฃŒ 1) ์šธ์‚ฐ๋Œ€ํ•™๊ต ํ™”ํ•™๊ณผ ์ • ํ•œ ๋ชจ.
Material Science HW2 Polystyrene (ํด๋ฆฌ์Šคํ‹ฐ๋ Œ) ID โ€“
Sources of the Magnetic Field
๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ์—๋„ˆ์ง€ ๊ฐ•์ขŒ ๋ฏธ๋ž˜์ฐฝ์กฐ๊ณผํ•™๋ถ€ ๊ธ€๋กœ๋ฒŒ ํ”„๋ก ํ‹ฐ์–ด ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ์—๋„ˆ์ง€ ์‹œ์Šคํ…œ ์—ฐ๊ตฌ๋‹จ/์„œ์šธ๋Œ€ํ•™๊ต
Q1: (๊ธˆ์† ๋Œ€๋น„)ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ์€? Q2: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ๊ตฌ์กฐ์˜ ํŠน์ง•์€? Q3: ์œ ๋ฆฌ์ „์ด์˜จ๋„ ๋ž€?
GENETIC TECHNOLOGY ์ƒ๋ฌผํ•™๊ฐœ๋ก  15์ฃผ์ฐจ ๊ฐ•์˜
Q1: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ์€? Q2: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ๊ตฌ์กฐ๋Š”? Q3: ์œ ๋ฆฌ์ „์ด์˜จ๋„ ๋ž€?
โ€˜2005 ์„์œ ํ™”ํ•™ ๋ฐ ์ •๋ฐ€ํ™”ํ•™ ์‹œ์žฅ๋ถ„์„ ๋ฐ ์ˆ˜์š”์˜ˆ์ธก ํ™”ํ•™๊ฒฝ์ œ์—ฐ๊ตฌ์› ์‹œ์žฅ๋ถ„์„ ๋ฆฌํฌํŠธ(2004๋…„12์›”)
์‹ํ’ˆํ™”ํ•™ ๊ฐœ์š”.
ํ”Œ๋ผ์Šคํ‹ฑ ์ดˆ๊ธฐํ™”๋ฉด ์‹ํ’ˆ์ƒ๋ช…๊ณผํ•™๊ณผ ํ—ˆ์ƒ์„  ๊ต์ˆ˜ [์ œ์ž‘์˜๋„] -๋ณธ์‹œ ํ•™์Šต์ฃผ์ œ๋ฅผ ๋‚˜ํƒ€๋‚ธ ์Šฌ๋ผ์ด๋“œ์ž„. [ํ™œ์šฉ๋ฐฉ๋ฒ•]
๋””์Šคํ”Œ๋ ˆ์ด ์—ฐ๊ตฌํšŒ ์„ธ๋ฏธ๋‚˜ ๊ด‘์†Œ์ž ์žฌ๋ฃŒ์˜ ๋น„์„ ํ˜• ๊ด‘ํ•™ํŠน์„ฑ ์ „์ž ์†Œ์ž ์‹ฌ์‚ฌํŒ€ ์žฅ ํ˜œ ์ •.
Q1: ๋ธ”๋กœ์„ฑํ˜•์˜ ํŠน์ง•์€? Q2: ๋ณตํ•ฉ์žฌ๋ฃŒ๋Š” ์–ด๋–ป๊ฒŒ ๊ฐ€๊ณตํ•˜๋Š”๊ฐ€? Q3: ํ”Œ๋ผ์Šคํ‹ฑ ๋ถ€ํ’ˆ ์„ค๊ณ„์‹œ ๊ณ ๋ ค์‚ฌํ•ญ
ํ•ต์‚ฐ์˜ ์„ฑ์งˆ๊ณผ ๋ถ„๋ฆฌ ์ƒ๋ฌผํ™˜๊ฒฝํ•™๊ณผ ๊น€ ์ • ํ˜ธ.
(1) ๋ธ”๋กœ์„ฑํ˜• (Blow Molding) ์ด๋ž€?
์‚ฌ์ถœ ์„ฑํ˜• ์ˆ˜์ง€ ๋ชฉ ์ฐจ 1. ์‚ฌ์ถœ ์„ฑํ˜• 2. ์‚ฌ์ถœ์„ฑํ˜•ํ’ˆ์˜ 2์ฐจ๊ฐ€๊ณต 3. ์ˆ˜์ง€์žฌ๋ฃŒ๋ณ„ ์šฉ๋„ 4. ์ˆ˜์ง€์žฌ๋ฃŒ๋ณ„ ๊ฐ๋ณ„๋ฒ•
4 ์žฅ: ์—๋„ˆ์ง€, ํ™”ํ•™, ๊ทธ๋ฆฌ๊ณ  ์‚ฌํšŒ ์—๋„ˆ์ง€(์—ด๊ณผ ์ผ, ๋ณด์กด๊ณผ ์†Œ๋ฉธ, ๊ทผ์›) ํ™œ์„ฑํ™” ์—๋„ˆ์ง€ ์„ํƒ„ ์„์œ  ์‚ฐ์†Œ๋กœ ์ฒ˜๋ฆฌ๋œ ๊ฐ€์†”๋ฆฐ
Q1: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ์€? Q2: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ๊ตฌ์กฐ๋Š”? Q3: ์œ ๋ฆฌ์ „์ด์˜จ๋„ ๋ž€?
Q1: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ์€? Q2: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ๊ตฌ์กฐ๋Š”? Q3: ์œ ๋ฆฌ์ „์ด์˜จ๋„ ๋ž€?
Q1: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ์€? Q2: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ๊ตฌ์กฐ๋Š”? Q3: ์œ ๋ฆฌ์ „์ด์˜จ๋„ ๋ž€?
์ œ10์žฅ ํด๋ฆฌ๋จธ ๊ฐ€๊ณต (2) - ํด๋ฆฌ๋จธ์™€ ๊ฐ•ํ™”ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ข…๋ฅ˜ -.
์†Œ์žฌ์ œ๊ฑฐ ๊ณต์ • (Material Removal Processes)
๋ฐฉ์ˆ˜์žฌ๋ฃŒ 13์กฐ ๋ฐ•ํƒœ๊ทœ ๊น€์„ฑํ›ˆ.
COSMETIC TUBE์˜ ๋ฏธ๋ž˜ ๊ณ ๋ถ„์ž ํ”„๋กœ์ ํŠธ 6์กฐ ์—„ํฌ์ฐฌ โ€“ ์กฐ์žฅ ๋ฐ•์„ธ์œค
Polyether Ether Ketone
3์žฅ. ์ƒ๋ช…์˜ ๋ถ„์ž ์ƒ๋ช…์˜ ๋ถ„์ž: ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ ํƒ„์ˆ˜ํ™”๋ฌผ(Carbohydrates) ์ง€๋ฐฉ(Lipids) ๋‹จ๋ฐฑ์งˆ(Proteins)
์ œ16์žฅ ์ œํ’ˆ์„ค๊ณ„์™€ ๊ฐ€๊ณต์˜ ๊ฒฝ์Ÿ๋ ฅ 1. ๊ฐ•๊ฑด์„ค๊ณ„(robust design, 16.2 ์ ˆ) 2. ํ’ˆ์งˆ๊ด€๋ฆฌ(16.3 ์ ˆ)
Do you know โ€œKevlarโ€? NAME Kim Myung Koo
๊ณ ๋ถ„์ž ํ™”ํ•™ 6๋ฒˆ์งธ ์‹œ๊ฐ„.
Chapter 3: Enzymes Prof. Jung Hoe Kim.
์ œ 14 ์žฅ ๊ฑฐ์‹œ๊ฒฝ์ œํ•™์˜ ๊ฐœ๊ด€ PowerPointยฎ Slides by Can Erbil
1 ๋„์‹œ์ฐจ์›์˜ ์‡ ํ‡ด์‹คํƒœ์™€ ๊ฒฝํ–ฅ Trends and Features of Urban Decline in Korea
์ˆญ์‹ค๋Œ€ํ•™๊ต ๋งˆ์ด๋‹์—ฐ๊ตฌ์‹ค ๊น€์™„์„ญ 2009๋…„ 2์›” 8์ผ ์•„์ด๋””์–ด  - ์ƒ๊ด€๋ถ„์„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ
๋ถ€์งํฌ๊ณตํ•™ ์ „๋ถ๋Œ€ํ•™๊ต ์œ ๊ธฐ์†Œ์žฌํŒŒ์ด๋ฒ„๊ณตํ•™๊ณผ ๊ธธ๋ช…์„ญ
2010 ํ™”ํ•™๋ฌผ์งˆ ์œ ํ†ต๋Ÿ‰ ์กฐ์‚ฌ - ์œ ํ†ต๋Ÿ‰ ๊ฐœ์š” ๋ฐ ์ž‘์„ฑ์‹œ ์ฃผ์˜์‚ฌํ•ญ -
3์žฅ ์ƒ๋ช…์ฒด์˜ ๋ถ„์ž.
์‹ค๋ฆฌ์ฝ˜ ๊ณ ๋ถ„์ž์˜ ๊ตญ๋‚ด,์™ธ ์ƒ์‚ฐ ๊ธฐ์—… ๋ฐ ์ฃผ์š” ์ƒ์‚ฐํ’ˆ.
์Šคํ‹ฐ๋ Œ๊ณ„ ๊ณ ๋ถ„์ž์˜ ๋ผ๋””์นผ ์ค‘ํ•ฉ ์šธ์‚ฐ๋Œ€ํ•™๊ต ํ™”ํ•™๊ณผ ์ • ํ•œ ๋ชจ.
๊ด‘๊ตฌ๋ณ‘ ์žฅ์š”ํ•œ ๊น€์ƒ๋• ๊น€ํƒœ์˜ ์œ ์Šน์ฒ  ์ด์ฑ„์› ์ •๋ฏผ์žฌ ๊น€๋ฒ”์ง„ ๊น€์ฐฌ์ผ ๋ฐฑ์˜ˆ์ง„.
5-3. ํ™”์„ ์—ฐ๋ฃŒ์˜ ์ด์šฉ ์„ธ๊ณ„ ์—๋„ˆ์ง€ ์†Œ๋น„๋Ÿ‰
์ ์™ธ์„ ๋ถ„๊ด‘๊ด‘๋„๋ฒ• (infrared spectroscopy)
์ค‘๊ตญ ์ฃผ๊ฐ€์ง€์ˆ˜ ์„ ๋ฌผ์‹œ์žฅ ํ˜„ํ™ฉ
10. ํ๊ธฐ๋ฌผ ๋ฐ Recycling.
์„ฌ์œ  ์†Œ์žฌ (ํ™”).
์ œ10์žฅ ํด๋ฆฌ๋จธ ๊ฐ€๊ณต (1) Q1: (๊ธˆ์† ๋Œ€๋น„)ํ”Œ๋ผ์Šคํ‹ฑ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ์€? Q2: ํ”Œ๋ผ์Šคํ‹ฑ์˜ ๊ตฌ์กฐ์˜ ํŠน์ง•์€?
Chapter 11 Theories of Covalent Bonding.
(1) ๋ธ”๋กœ์„ฑํ˜• (Blow Molding) ์ด๋ž€?
๊ณ ๋ถ„์ž ์žฌ๋ฃŒ ํ•œ๊ตญ์‚ฐ์—…๊ธฐ์ˆ ๋Œ€ํ•™๊ต Copyright ยฉ by ARTCOM PT All rights reserved.
๊ณ ์ฒด์˜ ์ „๋„์„ฑ Electronic Materials Research Lab in Physics,
๊ณ ๋ถ„์ž์˜ ๊ตฌ์กฐ (ํ™”).
Zinc Atomic number 30 The Fourth commonly used Exists only compound
๊ณ ๋ถ„์ž ํ™”ํ•™ 4๋ฒˆ์งธ ์‹œ๊ฐ„.
9. Do You Have a Scientific Mind?
์†Œ ๋ฐฉ ํ™” ํ•™ ํ˜œ์ฒœ๋Œ€ํ•™๊ต ์†Œ๋ฐฉ์•ˆ์ „๊ด€๋ฆฌ๊ณผ.
์ƒ๋ฌผ๋ถ„๋ฆฌ์ •์ œ๊ณตํ•™ ์ƒ๋ช…์ฒด ๊ธฐ๋ณธ๊ตฌ์„ฑ๋ถ„์ž์˜ ์ดํ•ด.
๋Œ€ ๋‚จ ํ•™ ์˜ ๊ต Y E T U S N R G V I A M ์‹ ์†Œ์žฌ๊ฐ€ ๋ณ€ํ™”์‹œํ‚ค๋Š” ๋ฏธ๋ž˜์‚ฌํšŒ (๋ณตํ•ฉ ์žฌ๋ฃŒ)
(1) ๋ธ”๋กœ์„ฑํ˜• (Blow Molding) ์ด๋ž€?
III. ์•„๋ฆ„๋‹ค์šด ๋ถ„์ž ์„ธ๊ณ„ 3. ํƒ„์†Œ ํ™”ํ•ฉ๋ฌผ โ€ฆ 01. ๋‹ค์–‘ํ•œ ํƒ„์†Œ ํ™”ํ•ฉ๋ฌผ 02. ํƒ„ํ™”์ˆ˜์†Œ์˜ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ
์ด์‚ฐ์ˆ˜ํ•™(Discrete Mathematics)
์ •ํ™•๋„์™€ ์ •๋ฐ€๋„ ๋ฐ ๋ฌผ์งˆ์˜ ๋ถ„๋ฆฌ ๋ฐฉ๋ฒ•.
์œ„ํ—˜ํ•œ ์œ ํ˜น, ํŠธ๋žœ์Šค์ง€๋ฐฉ Trans Fatty Acid.
์œ„ํ—˜ํ•œ ์œ ํ˜น, ํŠธ๋žœ์Šค์ง€๋ฐฉ Trans Fatty Acid.
์ง€๋ฐฉ์‚ฐ ์ƒํ•ฉ์„ฑ ์ถ•ํ•ฉ Acetyl-CoA๊ฐ€ ์นด๋ฅด๋ณต์‹คํ™”๋˜๋ฉด์„œ malonyl-CoA ํ•ฉ์„ฑ (acetyl-CoA carboxylase) CO2 + acetyl CoA + ATP + biotin-enz ๏ƒ  malonyl CoA + biotin-enz + ADP + Pi 2) Malonyl-CoA.
Presentation transcript:

Polymers and Plastics

Timeline - Precursors 1839 - Natural Rubber - method of processing invented by Charles Goodyear Timeline - Beginning of the Plastic Era with Semi Synthetics 1839 - Polystyrene (PS) discovered - Eduard Simon 1862 - Parkesine - Alexander Parkes 1863 - Cellulose Nitrate or Celluloid - John Wesley Hyatt 1872 - PVC - first created by Eugen Baumann 1894 - Viscose Rayon - Charles Frederick Cross, Edward John Bevan Timeline - Thermosetting Plastics and Thermoplastics 1908 - Cellophane ยฎ - Jacques E. Brandenberger 1909 - First true plastic Phenol-Formaldehyde tradenamed Bakelite -Leo Hendrik Baekeland 1926 - PVC - Walter Semon invented a plasticized PVC. 1927 - Cellulose Acetate 1933 - Polyvinylidene chloride or Saran also called PVDC - accidentally discovered by Ralph Wiley, a Dow Chemical lab worker. 1935 - LDPE - Reginald Gibson and Eric Fawcett 1936 - Acrylic or Polymethyl Methacrylate 1937 - Polyurethanes for plastics materials and Perlon for fibers. - Otto Bayer and co-workers discovered and patented the chemistry of polyurethanes 1938 โ€“ Polystyrene(PS) made practical 1938 - Polytetrafluoroethylene or PTFE tradenamed Teflon - Roy Plunkett 1939 - Nylon and Neoprene -Wallace Hume Carothers 1941 - Polyethylene Terephthalate or PET - Whinfield and Dickson 1942 - LDPE 1942 - Unsaturated Polyester also called PET patented by John Rex Whinfield and James Tennant Dickson 1951 - HDPE - Paul Hogan and Robert Banks 1951 - PP - Paul Hogan and Robert Banks 1953 - Saran Wrap introduced by Dow Chemicals. 1954 - Styrofoam a polystyrene foam was invented by Ray McIntire for Dow Chemicals 1964 - Polyimide 1970 - Thermoplastic Polyester (includes Dacron, Mylar, Melinex, Teijin, and Tetoron) 1978 - Linear Low Density Polyethylene 1985 - Liquid Crystal Polymers

Nylon stocking Nylon ์€ DuPont ์‚ฌ Wallace Carothers ์— ์˜ํ•ด ๋ฐœ๋ช…(1938) 1940๋…„ 5์›” 15์ผ ๋ฏธ๊ตญ ๋‰ด์š•์‹œ์—์„œ ๋‚˜์ผ๋ก ์œผ๋กœ ๋งŒ๋“  4๋ฐฑ๋งŒ ์ผค๋ ˆ์˜ ์Šคํƒ€ํ‚น์€ ํŒ๋งค์‹œ์ž‘ ์ˆ˜ ์‹œ๊ฐ„๋งŒ์— ๋งค์ง„ ์ด์ฐจ๋Œ€์ „ ๋•Œ ๊ตฐ์‚ฌ์šฉํ’ˆ์œผ๋กœ ์ „ํ™˜๋˜์–ด ๋ฏผ๊ฐ„์ˆ˜์š”๋Š” 1945๋…„ ์ดํ›„์— ๋ณด๊ธ‰ X200 SEM/EDX image Dee Breger ,Mgr. SEM/EDX Facility, Lamont-Doherty Earth Observatory

History of Polymers 1870๋…„ ๋ฏธ๊ตญ John Hyatt ์…€๋ฃจ๋กœ์ด๋“œ(nitrocellulose + camphor) ๊ฐœ๋ฐœ ์˜๊ตญ์˜ Alexander Parkes๊ฐ€ ์ตœ์ดˆ ๊ฐœ๋ฐœํ•œ Parksine์„ ์‘์šฉ ์ƒ์•„ ๋Œ€์ฒด - ๋‹น๊ตฌ๊ณต ์ œ์กฐํšŒ์‚ฌ์˜ ๋งŒ ๋‹ฌ๋Ÿฌ ๊ณต๋ชจ 1907๋…„ Leo Baekeland๊ฐ€ Bakelite(ํŽ˜๋†€-ํฌ๋ฆ„์•Œ๋ฐํžˆ๋“œ์ˆ˜์ง€)๊ฐœ๋ฐœ, ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ 1938๋…„ Dow์‚ฌ๋Š” ํด๋ฆฌ์Šคํ‹ฐ๋ Œ ๋Œ€๋Ÿ‰์ƒ์‚ฐ 1939๋…„ ๋“€ํ์‚ฌ๋Š” ๋‚˜์ผ๋ก (nylon-6,6)์„ ๋Œ€๋Ÿ‰์ƒ์‚ฐํ•˜์—ฌ ์Šคํƒ€ํ‚น ํŒ๋งค ์‹œ์ž‘. ๊ณ ๋ถ„์ž ํ™”ํ•™ ๋ฐœ๋‹ฌ์— ๊ณ„๊ธฐ

History of Polymers 1839๋…„ Charles Goodyear ๊ฐ€ ์ฒœ์—ฐ๊ณ ๋ฌด(latex) ์— ํ™ฉ์„ ๊ฐ€ํ•˜์—ฌ ํƒ€์ด์–ด์šฉ์˜ ๊ณ ๋ฌด ๋Œ€๋Ÿ‰์ƒ์‚ฐ ๊ณ ๋ฌด์˜ ๋‚ด์—ด ํŠน์„ฑ ๋•Œ๋ฌธ์— ํƒ€์ด์–ด์— ์ ํ•ฉ

Wallace Carothers, inventor of Nylon (1930 at DuPont). (1896 - 1937) 6

Hermann Staudinger(1953 Nobel Prize for chemistry) In a landmark paper published in 1920, Staudinger concluded the structure of rubber and other polymeric substances: โ€œpolymers were long chains of short repeating molecular units linked by covalent bonds.โ€ Staudinger termed makromolekรผls paved the way for the birth of the field of polymer chemistry.

A.J.Heeger A.G. MacDiarmid H.Shirakawa Nobel laureates in polymer science K. Ziegler G. Natta (1897-1973) (1903-1979) P.J.Flory (1936- ) ํ™”ํ•™ H. Staudinger (1881-1965) 1953 1963 1974 A.J.Heeger A.G. MacDiarmid H.Shirakawa (1910-1985) (1927- ) (1936- ) P.-G de Gennes (1932- ) ๋ฌผ๋ฆฌ 2000 1991

polymer = poly(๋งŽ์€)+meros (๋ถ€๋ถ„) ๋™์ผํ•œ ๊ตฌ์กฐ( ๋‹จ์œ„์ฒด, monomer )์˜ ๋ฐ˜๋ณต๋‹จ์œ„๋กœ ๋œ ํ™”ํ•ฉ๋ฌผ ์ค‘ํ•ฉ์ฒด๋ผ๊ณ ๋„ ๋ถˆ๋ฆฐ๋‹ค.

Tacticity Tacticity โ€“ stereoregularity of chain isotactic โ€“ all R groups on same side of chain syndiotactic โ€“ R groups alternate sides atactic โ€“ R groups random 10

cis/trans Isomerism cis trans cis-isoprene (natural rubber) bulky groups on same side of chain trans trans-isoprene (gutta percha) bulky groups on opposite sides of chain 11

Homopolymer is a polymer made up of only one type of monomer ( CF2 CF2 )n Teflon ( CH2 CH2 )n Polyethylene ( CH2 CH )n Cl PVC Copolymer is a polymer made up of two or more monomers ( CH CH2 CH2 CH CH CH2 )n Styrene-butadiene rubber

Copolymers two or more monomers polymerized together random random โ€“ A and B randomly vary in chain alternating โ€“ A and B alternate in polymer chain block โ€“ large blocks of A alternate with large blocks of B graft โ€“ chains of B grafted on to A backbone A โ€“ B โ€“ random alternating block graft 13

Thermoplastics vs. Thermosets Callister, Fig. 16.9 T Molecular weight Tg Tm mobile liquid viscous rubber tough plastic partially crystalline solid โ€ข Thermoplastics: -- little crosslinking -- ductile -- soften w/heating -- polyethylene polypropylene polycarbonate polystyrene โ€ข Thermosets: -- large crosslinking (10 to 50% of mers) -- hard and brittle -- do NOT soften w/heating -- vulcanized rubber, epoxies, polyester resin, phenolic resin Adapted from Fig. 15.19, Callister 7e. (Fig. 15.19 is from F.W. Billmeyer, Jr., Textbook of Polymer Science, 3rd ed., John Wiley and Sons, Inc., 1984.) 14

Annual U.S. production of plastics from 1935 to 1997

Comparison with Other Industries United States Plastics industry is the nationโ€™s 4th largest manufacturing industry (shipments): Motor Vehicles and Equipment Petroleum Refining Electronic Components and Accessories Plastics (Source: Probe Economics, Inc. 2004)

<Source : Plastics Age Dec. 2005> ์ฃผ์š”๊ตญ ๋ณ„ ๋ฒ”์šฉ ํ”Œ๋ผ์Šคํ‹ฑ ์ƒ์‚ฐ ยท ์†Œ๋น„ ํ˜„ํ™ฉ <2003 : 1,000 MT> ๊ตญ๋ณ„ ์ƒ์‚ฐ ์ˆ˜์ถœ ์ˆ˜์ž… ๊ตญ๋‚ด์†Œ๋น„ 1์ธ๋‹น ์†Œ๋น„๋Ÿ‰ (kg) ๋ฏธ๊ตญ ๋…์ผ ์ผ๋ณธ ํ”„๋ž‘์Šค ๋ฒจ๊ธฐ์— ํƒ€์ด์™„ ์นด๋‚˜๋‹ค ์ธ๋„ ๋ธŒ๋ผ์งˆ ์ŠคํŽ˜์ธ ์ดํƒœ๋ฆฌ ์˜๊ตญ 48,513 16,800 13,978 6,725 6,700 6,639 5,001 4,675 4,141 3,841 3,705 2,774 - 10,500 4,712 4,935 11,050 3,730 3,983 757 901 2,305 1,340 1,745 6,310 1,249 3,940 6,041 636 3,000 475 577 2,980 4,830 3,627 51,469 12,610 10,515 5,760 1,800 3,444 4,018 4,186 3,817 4,517 6,930 4,656 177 153 82 92 183 128 (2002) 126 4 22 108 123 89 ํ•ฉ๊ณ„ 155,216 <Source : Plastics Age Dec. 2005> 17 17

<์ž๋ฃŒ : ํ•œ๊ตญ์„์œ ํ™”ํ•™๊ณต์—…ํ˜‘ํšŒ, ๊ด‘๊ณต์—…ํ†ต๊ณ„์กฐ์‚ฌ๋ณด๊ณ ์„œ (ํ†ต๊ณ„์ฒญ). > ๊ตญ๋‚ด ๋ฒ”์šฉ ํ•ฉ์„ฑ์ˆ˜์ง€ ์ˆ˜๊ธ‰ ํ˜„ํ™ฉ <๋‹จ์œ„ : 1,000 ํ†ค> ์ˆ˜์ถœ ์ˆ˜์ž… LDPE HDPE PP PS ABS PVC 822 1,204 1,616 712 975 499 41 12 14 19 5 51 803 1,139 1,653 636 1,082 518 42 15 34 6 48 ์—ด๊ฐ€์†Œ์„ฑ ์ˆ˜์ง€ 5,828 142 5,831 157 Phenolic Melamine UPE Epoxy PU 10 1 74 24 26 9 3 32 2 17 93 28 27 36 16 ์—ด๊ฒฝํ™”์„ฑ ์ˆ˜์ง€ 124 89 152 92 ํ•ฉ๊ณ„ 5,952 231 5,983 249 PETE is not shown because PETE is from EG(ethylene glycol) + TPA(terephtalic acid) <์ž๋ฃŒ : ํ•œ๊ตญ์„์œ ํ™”ํ•™๊ณต์—…ํ˜‘ํšŒ, ๊ด‘๊ณต์—…ํ†ต๊ณ„์กฐ์‚ฌ๋ณด๊ณ ์„œ (ํ†ต๊ณ„์ฒญ). > 18

์ฃผ์š”๊ตญ ๋ณ„ 1์ธ๋‹น ํ”Œ๋ผ์Šคํ‹ฑ ์†Œ๋น„๋Ÿ‰ kg per capita 107 82 90 128 177 126 153 92 123 79 183 <์ž๋ฃŒ : Plastics Age Dec. 2005, ๊ด‘๊ณต์—… ํ†ต๊ณ„์กฐ์‚ฌ๋ณด๊ณ ์„œ (ํ†ต๊ณ„์ฒญ)> โ˜ž Korea still has potentials of Sustainable Growth in Polymer Industry

Out of Crude Oil

42 gallon 21

Polymers Scientists use one or more of the following strategies to design the molecular feature of the polymer chain: 1. length of the chain (# of monomer units); 2. 3-D arrangement of the chains in the solid; 3. branching of the chain: 4. chemical composition of the monomer units; 5. bonding between the chains; 6. orientation of the monomer units within the chain.

Polymers Polyethylene: most common plastic from the monomer ethylene (C2H4) polyethylene ethylene

A. ๋ถ€๊ฐ€์ค‘ํ•ฉ (Addition polymerization) A1. Radical Polymerization โ€ข Initiation: homolytic cleavage of e.g. a peroxide. โ€ข Termination of the polymerization by reaction of two radicals:

A2. Cation Polymerization โ€ข Initiators: (Lewis) acids such as H+ and BF3.

A3. Anion Polymerization โ€ข Initiators: anions such as in C4H9Li or NaOC2H5.

SOME VINYL POLYMERS

RUBBERS: POLYMERS FROM DIENES

POLYMERIZATION PROCESS โ€ข Resonance stabilization of allylic radical. โ€ข Synthetic rubbers: mixture of structural fragments. โ€ข Natural rubbers (latex): regular structure with only Z-double bonds.

B. ์ถ•ํ•ฉ์ค‘ํ•ฉ (Condensation polymerization) Polyesters polyethylene terephthalate PET, dacron Polycarbonates Lexan(GE)

Polyamides (nylons) Cf) Amide from lactam โ€ข Use in fibers, strong threads and clothes.

* ์ค‘๋ถ€๊ฐ€ (Poly addition) : No low molecular by-product โ€ข Actually not a polycondensation, but a step-growth polymerization โ€ข Application as insulation material (PUR foam).

C. ๋ถ€๊ฐ€์ค‘ํ•ฉ (Addition condensation)

๊ฐœํ™˜์ค‘ํ•ฉ (Ring-opening polymerization)

Big Six Polymers Polyethylene (LDPE, HDPE) Polypropylene (PP) Polystyrene (PS) Polyvinyl chloride (PVC) Polyethyle terephthalate (PETE) -thermoplastic, meaning they can be melted and reshaped. They also tend to be flexible. -PE and PP have both crystalline and amorphous regions. The others - PS, PVC, and PET - are not crystalline. Their chains are bonded randomly.

36

Uses of the โ€œBig Sixโ€ polymers 37

A growing PET polymer chain terephthalic acid ethylene glycol

Polyethylene(PE) Radical polymerization of ethylene 39

Classification of PE Polyethylenes์€ ๋ฐ€๋„์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ๊ณ ๋ถ„์ž์˜ ๊ฐ€์ง€์น˜๊ธฐ ์ข…๋ฅ˜,๊ฐฏ์ˆ˜์— ๋”ฐ๋ผ ๋ฐ€๋„๊ฐ€ ๋ณ€ํ•œ๋‹ค. HDPE (high density PE) - ์šฐ์œ ํ†ต MDPE (medium density PE) - ๋ฐฐ๊ด€ LDPE (low density PE) - ํ”Œ๋ผ์Šคํ‹ฑ๋ฐฑ, squeeze LLDPE (linear low density PE) a substantially linear polymer, with significant numbers of short branches, commonly made by copolymerization of ethylene with longer-chain olefins.

LDPE vs. HDPE - branching a HDPE molecule an LDPE molecule

Uses of LDPE ์œ ์—ฐ์„ฑ ๊ฐ•๋„์™€ ๋‚ดํ™”ํ•™์„ฑ์ด ์šฐ์ˆ˜ ๋ฐœํฌ์ œํ’ˆ ์šฐ์ˆ˜ํ•œ ์ „๊ธฐ์ ˆ์—ฐ์„ฑ, ์œ ์—ฐ์„ฑ ๋งˆ์š”๋„ค์ฆˆ๋‚˜ ์ผ€์ฐน ์šฉ๊ธฐ ๋“ฑ์˜ ํ”Œ๋ผ์Šคํ‹ฑ squeeze bottle ๊ฐ•๋„์™€ ๋‚ดํ™”ํ•™์„ฑ์ด ์šฐ์ˆ˜ ์•ฝํ’ˆ, ์Œ๋ฃŒ, ํ™”์žฅํ’ˆ ์šฉ๊ธฐ์—๋„ ๋งŽ์ด ์‚ฌ์šฉ๋œ๋‹ค ๋ฐœํฌ์ œํ’ˆ ๊ธฐํฌ๋ฅผ ํ•จ์œ ํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ ์™„์ถฉํฌ์žฅ์žฌ, ๊ณ ์ธต๊ฑด๋ฌผ์˜ ์ง€๋ถ•๋ฐ”๋‹ฅ์žฌ ๋ฐ ์†Œ์Œ ๋ฐฉ์ง€์žฌ, ์Šคํฌ์ธ ๋ ˆ์ €์šฉํ’ˆ ์šฐ์ˆ˜ํ•œ ์ „๊ธฐ์ ˆ์—ฐ์„ฑ, ์œ ์—ฐ์„ฑ ์˜ฅ๋‚ด ์™ธ ๊ฐ์ข… ์ „์„ ์˜ ์ ˆ์—ฐ์ฒด, ํ”ผ๋ณต

LDPE

Properties of LDPE HDPE๋ณด๋‹ค ๊ฐ€์ง€๊ฐ€ ๋งŽ๋‹ค ๋ถ„์ž๊ฐ„ ํž˜์ด ์•ฝํ•˜๊ฒŒ ์ž‘์šฉ the chains do not "fit well" together. mp 105 ~ 115 ยฐC ๋ถ„์ž๊ฐ„ ํž˜์ด ์•ฝํ•˜๊ฒŒ ์ž‘์šฉ as the instantaneous-dipole induced-dipole attraction is less. a lower density and tensile strength, increased malleability and faster biodegradation created by free radical polymerization

FT-IR of LDPE & HDPE

HDPE Branching์ด ๊ฑฐ์˜ ์—†๋Š” ๊ณ ๋ถ„์ž ์‚ฌ์Šฌ ์ œ์กฐ๋ฐฉ๋ฒ• stronger intermolecular forces mp 120 ~ 130 ยฐC ์ œ์กฐ๋ฐฉ๋ฒ• by an appropriate choice of catalysts (e.g. Ziegler catalysts, ๋…ธ๋ฒจํ™”ํ•™์ƒ, 1963) reaction conditions.

Properties of HDPE ์ „๊ธฐ์  ์„ฑ์งˆ ๊ด‘ํ•™์  ์„ฑ์งˆ ๋‚ด์•ฝํ’ˆ์„ฑ HDPE๋Š” ์ „ํ˜•์ ์ธ ๊ทน์„ฑ ๊ณ ๋ถ„์ž๋กœ์„œ ์ „๊ธฐ์žฅ(electric field)์†์—์„œ ์ด์˜จ ๋ถ„๊ทน์ด๋‚˜ ์Œ๊ทน์ž ๋ถ„๊ทน์ด ์—†๊ณ  ์ „์ž๋ถ„๊ทน์ด๋‚˜ ์›์ž๋ถ„๊ทน๋งŒ ์กด์žฌํ•œ๋‹ค. ๋›ฐ์–ด๋‚œ ์ ˆ์—ฐ์„ฑ ๋•Œ๋ฌธ์— HDPE๋Š” ์ „์„ (wire) & ์ผ€์ด๋ธ”(cable)์šฉ ์ ˆ์—ฐ ์†Œ์žฌ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ด‘ํ•™์  ์„ฑ์งˆ HDPE์˜ ๊ด‘ํ•™์  ์„ฑ์งˆ์€ ๋ถˆํˆฌ๋ช…๋„(haze), ๊ด‘ํƒ์„ฑ(gloss), ํˆฌ๋ช…๋„(transparency) ๋“ฑ์œผ๋กœ ํŠน์„ฑํ™”๋˜๋ฉฐ ์ด๋Ÿฌํ•œ ์„ฑ์งˆ๋“ค์€ ๋‚ด๋ถ€๊ฒฐ์ •์ƒํƒœ, ๊ฐ€๊ณต์กฐ๊ฑด ๋“ฑ์— ์˜ํ•ด ์ขŒ์šฐ๋œ๋‹ค. HDPE ํ•„๋ฆ„์˜ ํ‘œ๋ฉด์ด ํ‰ํ™œํ•˜์ง€ ๋ชปํ•˜๋ฉด ๋ถˆํˆฌ๋ช…๋„(haze)๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ , ๋‚ด๋ถ€์— ๊ณต๊ฐ„(void)์ด ๋งŽ๊ฑฐ๋‚˜ ๊ฒฐ์ •๋„๊ฐ€ ํฌ๋ฉด ๊ฒฐ์ •๋“ค(spherulites) ์‚ฌ์ด ๊ฒฝ๊ณ„๋ฉด์—์„œ์˜ ๋น›์˜ ๋ถ„์‚ฐ, ๊ตด์ ˆ๋กœ ์ธํ•ด ํˆฌ๋ช…์„ฑ์ด ์ €ํ•˜๋˜๋Š”๋ฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ HDPE๊ฐ€ LDPE๋ณด๋‹ค ๋ถˆํˆฌ๋ช…ํ•œ ์ด์œ ์ด๋‹ค. ๋‚ด์•ฝํ’ˆ์„ฑ HDPE๋Š” ๊ตฌ์กฐ์ ์œผ๋กœ ๊ฒฐ์ •๋„๊ฐ€ ๋†’๊ณ  3์ฐจ ์ˆ˜์†Œ(tertiary H)์˜ ์ˆ˜๊ฐ€ ๋งค์šฐ ์ ๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค๋ฅธ polyolefin์— ๋น„ํ•ด ์‚ฐํ™”์— ๋Œ€ํ•œ ์•ˆ์ •์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ๋˜ํ•œ ์‘๋ ฅ์ด ๊ฐ€ํ•ด์ง€์ง€ ์•Š์€ ์ƒํƒœ์—์„œ 60โ„ƒ๊นŒ์ง€๋Š” ๋ณดํ†ต์˜ ์œ ๊ธฐ์šฉ์ œ๋‚˜ ์‚ฐ, ์•Œ์นผ๋ฆฌ ๋“ฑ์— ๋Œ€ํ•˜์—ฌ ๊ทนํžˆ ์•ˆ์ •ํ•˜๋ฏ€๋กœ ๊ฐ์ข… ํ™”ํ•™์•ฝํ’ˆ์˜ ์šฉ๊ธฐ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. Xylene ์šฉ์•ก ์†์—์„œ๋Š” ์˜จ๋„๊ฐ€ ์ƒ์Šนํ•˜๋ฉด ํŒฝ์œค(swelling)์„ ์ผ์œผํ‚ค๋ฉฐ, CS2๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ์šฉ์•ก์— ๋Œ€ํ•ด์„œ๋Š” ์ทจ์•ฝํ•˜์—ฌ 40โ„ƒ์ด์ƒ์—์„œ ๋ถ„ํ•ด๋œ๋‹ค.

FT-IR of HDPE

Polypropylene(PP) Isotactic vs syndiotactic polymers Ziegler-Natta catalyst, Nobel Prize in Chemistry in 1963 relative orientation of the alkyl groups in polymer chains Isotactic vs syndiotactic polymers melting point of ~160ยฐC 50

Polyethylene terephthalate(PET(PETE)) melting point of ~260ยฐC Polyester family PET Nylon 51

Polyvinyl chloride (PVC) melting point of ~100-260ยฐC Dioxins 52

Polystyrene(PS) Water-based paint Glass temperature of ~95ยฐC Ziegler-Natta catalyst, Nobel Prize in Chemistry in 1963 relative orientation of the alkyl groups in polymer chains Water-based paint 53

Application of Advanced Composite Materials Application of advanced composite materials in Boeing 757-200 commercial aircraft. Source: Boeing Commercial Airplane Company.

Typical Properties of Reinforcing Fibers

Fibers dominate composite properties

ยฉ2003 Brooks/Cole, a division of Thomson Learning, Inc ยฉ2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learningโ„ข is a trademark used herein under license. Comparison of the specific strength and specific modulus of fibers versus metals and polymers.

polymers Naturally occurring polymers Proteins Nucleic acids Cellulose Rubber Synthetic polymers Nylon Dacron Lucite

Natural Polymers ๋™๋ฌผ ์‹๋ฌผ DNA, RNA, polypeptide, Proteins ๊ฑฐ๋ฏธ์ค„, ๋น„๋‹จ ์˜ค๋ฆฌํ„ธ (Duck down) ์ƒ์•„ ์‹๋ฌผ ๋…น๋ง โ€“ starch (polymer of ๏ก-glucose) ๋‚˜๋ฌด โ€“ cellulose (polymer of ๏ข-glucose) DNA, RNA, polypeptide, Proteins ์ธ๊ฐ„์€ ์ž์—ฐ ๊ณ ๋ถ„์ž๋ฅผ ํ‰๋‚ด๋‚ด๋ ค ํ•œ๋‹ค

From glucose cellulose starch

Glucose Why is glucose soluble in water? 62

Two Form of Glucose Glucose ๏ข - form Forms linear chains โ€“ cellulose Structrural componet of plants, trees ๏ก - form Two forms Linear polymer โ€“ amylose Branched polymer โ€“ amylopectin We can eat both forms but only ๏ก-form can be digested enzyme (amylase) The ๏ข-form (cellulose) makes up the fiber in our diet, which is necessary Cellulase digests cellulose can be found in herbivores (cows, goats, etc.) 63

๏ข-glucose for cellulose 64

๏ก-glucose for starch amylose amylopectin ๏ก 1,4 glycosidic bond natural organic polymer amylopectin mostly amylose ๏ก 1,6 glycosidic bond ๋ถ„๋งํ˜•ํƒœ

Same glucose monomers? ์˜ฅ์ˆ˜์ˆ˜๋ฅผ ์ฝ์œผ๋ฉด์„œ ์‹ ๋ฌธ์„ ๋จน๋Š”๋‹ค amylase cellulase enzyme for starch into glucose cellulase enzyme for cellulose into glucose

From amino acid proteins peptides

Naturally Occurring Amino Acids an amino group (-NH2) a carboxyl group (-COOH) Naturally Occurring Amino Acids

Peptide bonding Amino acid โ†’ polypeptide โ†’ protein Peptide bonds amino carbonyl Peptide bonds Amino Acid Condensation Reaction Tripeptide Peptide bond (amide function group) Proteins determined by the order of the amino acids, how the polymer orders the chain and how the polymers interact with each other 69

Cellulose and starch from glucose Various proteins from amino acid How about DNA and RNA?

DNA : polymer of base pairs

From the natural rubber Polymer industry From the natural rubber To plastic

from rubber trees

History of Polymers : rubber Natural rubber was first scientifically described by C.-M. de la Condamine and Franรงois Fresneau of France following an expedition to South America in 1735. The English chemist Joseph Priestley gave it the name rubber in 1770 when he found it could be used to rub out pencil marks. Its major commercial success came only after the vulcanization process was invented by Charles Goodyear in 1839.

Diene Polymers: Natural and Synthetic Rubber Conjugated dienes can be polymerized The initiator for the reaction can be a radical, or an acid Polymerization: 1,4 addition of growing chain to conjugated diene monomer

Natural Rubber A material from latex, in plant sap In rubber repeating unit has 5 carbons and Z stereochemistry of all C=C Gutta-Percha is natural material with E in all C=C Looks as if it is the head-to-tail polymer of isoprene (2-methyl-1,3-butadiene)

Vulcanization Natural and synthetic rubbers are too soft to be used in products Charles Goodyear discovered heating with small amount of sulfur produces strong material Sulfur forms bridges between hydrocarbon chains (cross-links)

Synthetic Rubber Chemical polymerization of isoprene does not produce rubber (stereochemistry is not controlled) Synthetic alternatives include neoprene, polymer of 2-chloro-1,3-butadiene This resists weathering better than rubber

Polymerization Methods Radical Polymerization, ์ฒจ๊ฐ€ ๋ฐ˜์‘ Step-wise addition of monomers Monomers have double bonds (๋ถˆํฌํ™”) Polymers have carbon chain backbone Condensation Polymerization, ์ถ•ํ•ฉ๋ฐ˜์‘ Generate a small molecule (ํƒˆ์ˆ˜) Polymer can grow from both ends Polymers have oxygen or nitrogen in backbone Two types of polymer reactions Radical & Condenstation Radical polymerization requires three steps Initiation Propagation Termination Starting material are unsaturated molecules (compound with double bonds) 79

Condensation Polymerization H2O H2O 80

Condensation Polymers Monomers Polymers adipic acid & hexyldiamine Nylon-66 terephthalic acid & phenylenediamine Kevlar terephthalic acid & ethylene glycol Dacron 81

Simulated Kevlar structure ์ถ•ํ•ฉ์ค‘ํ•ฉ๋ฐ˜์‘ ๋ฐฉํƒ„์กฐ๋ผ์˜ ์›๋ฃŒ Stephanie L. Kwolek (1965, DuPont)

Comparison of fibers Vectran CNTubes Biosteel - spider silk from goat milk

Polymers around us a polyacrylonitrile * orlon : ์ผ๊ด‘์— ๋Œ€ํ•œ ์ €ํ•ญ์„ฑ์ด ๊ฐ•ํ•œ ๊ฒƒ์ด ํŠน์ง•์ด๋ฉฐ, ๊ทธ ์ ์—์„œ ๋‚˜์ผ๋ก ์˜ ๊ฒฐ์ ์„ ๋ณด์ถฉํ•˜์—ฌ ์ฒœ๋ง‰ ยท์ปคํŠผ ยทํ–‡๋น›๊ฐ€๋ฆฌ๊ฐœ ยท๋› ยท์™ธ์ถœ๋ณต, ์šฐ์ฃผ๋ณต ๋“ฑ์— ์‚ฌ์šฉ a polyacrylonitrile * lycra : ์„ฌ์œ ์˜ ๋น„์ค‘์ด ์ž‘๊ณ  ์ธ์žฅ๊ฐ•๋„ ยท๊ตด๊ณก์„ฑ ยท๋‚ด๋งˆ๋ชจ์„ฑ ยท๋‚ด์—ด์„ฑ์ด ์šฐ์ˆ˜ํ•˜๋‹ค. ์™ธ๊ณผ ์˜๋ฃŒ์šฉ ํŽธ์„ฑ๋ฌผ, ํƒ„์„ฑ๋ฐด๋“œ, ์ˆ˜์˜๋ณต, ์‚ฐ์—…์šฉ ยท๊ตฐ์šฉ์œผ๋กœ ๋งŽ์ด ์‚ฌ์šฉ

Polymers around us Polycarbonate polymer Polyurethane Melamine formaldehyde Lexan Bottle

ABS : copolymer made by polymerizing styrene and acrylonitrile in the presence of polybutadiene. Gore-Tex: It was co-invented by Wilbert L. Gore, Rowena Taylor, and Gore's son, Robert W. Gore. It is a porous form of PTFE with a micro-structure characterized by nodes interconnected by fibrils.

Polymers for Health * ์˜๋ฃŒ์šฉ ๊ณ ๋ถ„์ž : ์ƒ์ฒด ๋ถ„ํ•ด์„ฑ ๊ณ ๋ถ„์ž๋Š” ๋‹จ์ˆœ ๊ฐ€์ˆ˜๋ถ„ํ•ด ๋˜๋Š” ํšจ์†Œ์˜ ์ž‘์šฉ์œผ๋กœ ๋ถ„ํ•ด์†Œ๋ฉธ๋˜๋Š” ๊ณ ๋ถ„์ž์ด๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ํ•ฉ์„ฑ๊ณ ๋ถ„์ž๋Š” ๋ถ„ํ•ด๋˜์ง€ ์•Š์ง€๋งŒ, ์ผ๋ถ€ ์ง€๋ฐฉ์กฑ ํด๋ฆฌ์—์Šคํ„ฐ ํ˜น์€ ํด๋ฆฌ์นด๋ณด๋„ค์ดํŠธ๋“ค์€ ๊ฐ€์ˆ˜๋ถ„ํ•ด์— ์˜ํ•ด ์ฒœ์ฒœํžˆ ๋ถ„ํ•ด๋œ๋‹ค. ์น˜๊ณผ์šฉ ๊ณ ๋ถ„์ž๋กœ๋Š” ๊ตฌ๊ฐ•๋‚ด ํŠน์ˆ˜ํ•œ ์ƒํ™ฉ์œผ๋กœ ์š”๊ตฌํŠน์„ฑ์ด ๋งค์šฐ ๊นŒ๋‹ค๋กœ์™€, PMMA์™€ bis-GMA๊ณ„ ๋ณตํ•ฉ์žฌ๊ฐ€ ์ฃผ์ข…์„ ์ด๋ฃฌ๋‹ค. ํ˜ˆ์•กํˆฌ์„๊ธฐ, ํ˜ˆ์žฅ๋ถ„๋ฆฌ๊ธฐ, ์ธ๊ณต์‹ฌํ๊ธฐ๋“ฑ์— ์“ฐ์ด๋Š” ๋ถ„๋ฆฌ๋ง‰ ์†Œ์žฌ๋กœ๋Š” PMMA, PP, PAN, polysulfone, cellulose, PVA, PE, poly(ethylene-co-vinylacetate)๋“ฑ์ด ์‚ฌ์šฉ๋œ๋‹ค. ์ธ๊ณตํ”ผ๋ถ€ ์ธ๊ณต ๋ผˆ ์ธ๊ณตํ˜ˆ๊ด€ * ์ฝ˜ํƒํŠธ ๋ Œ์ฆˆ : ์ดˆ๊ธฐ์— ๊ฐœ๋ฐœ๋œ PMMA๋Š” ํˆฌ๋ช…ํ•˜๊ณ  ๊ธฐ๊ณ„์  ๊ฐ•๋„๋Š” ์šฐ์ˆ˜ํ•˜๋‚˜ ์ฐฉ์šฉ๊ฐ์ด ๋‚˜์˜๊ณ  ์‚ฐ์†Œํˆฌ๊ณผ์„ฑ์ด ๊ฑฐ์˜ ์—†์œผ๋ฏ€๋กœ ์‹œ์žฅ์—์„œ ์‡ ํ‡ดํ•˜๊ณ , ์ตœ๊ทผ์— ๋งŽ์ด ์“ฐ์ด๋Š” ๊ฒฝ์งˆ ์ฝ˜ํƒํŠธ ๋ Œ์ฆˆ์— ์žฌ๋ฃŒ๋กœ์„œ PHEMA(poly hydroxyethylmethacrylate)๊ณ„ ์นœ์ˆ˜์„ฑ ํ•˜์ด๋“œ๋กœ์ ค์„ ์‚ฌ์šฉํ•œ๋‹ค. PMMA์— ๋น„ํ•˜์—ฌ ๊ธฐ๊ณ„์  ๊ฐ•๋„๋Š” ๋–จ์–ด์ง€์ง€๋งŒ, ์นœ์ˆ˜์„ฑ์ด๋ฉฐ ์‚ฐ์†Œํˆฌ๊ณผ์„ฑ์ด ๋†’์•„ ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค.

Conductive polymer polyacetylene Polyphenylenevinylene(PPV) Transparent conductor Poly(3,4-ethylene-dioxythiophene) or PEDOT polyaniline (X = N, NH) and polyphenylene sulfide (X = S). polythiophene (X = S) and polypyrrole (X = NH)

Biodegradable polymer ์ธ๊ณต์žฅ๊ธฐ๋ฅผ ํ‚ค์šฐ๋Š” ํ‹€๋กœ ํ™œ์šฉ ์ƒ ๋ถ„ํ•ด์„ฑ ๊ณ ๋ถ„์ž๋ฅผ ์ด์šฉํ•ด ๊ท€์˜ ํ˜•ํƒœ๋ฅผ ๋งŒ๋“ค๊ณ , ๊ท“๋ฐ”ํ€ด๊ฐ€ ์—†๋Š” ์‚ฌ๋žŒ์˜ ๊ท€ ์„ธํฌ๋ฅผ ๋–ผ์–ด๋‚ด ๋ฐฐ์–‘์•ก์—์„œ ํ‚ค์šฐ๋ฉด, ์‹œ๊ฐ„์ด ์ง€๋‚˜ ํ‹€์„ ์œ ์ง€ํ•˜๋˜ ์ƒ ๋ถ„ํ•ด์„ฑ ๊ณ ๋ถ„์ž๋Š” ๋ถ„ํ•ด๋˜๊ณ  ๊ทธ๊ณณ์— ๊ท€์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„ ์„ธํฌ๋“ค์ด ์ž๋ž€๋‹ค. ์ด๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ๊ท€๋ฅผ ์‹คํ—˜์šฉ ๋ˆ„๋“œ๋งˆ์šฐ์Šค๋‚˜ ์‚ฌ๋žŒ์—๊ฒŒ ์ด์‹ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋น„๋‹ˆ๋ฃจ, ๋น„๋‹ โ€˜๋น„๋‹ˆ๋ฃจโ€™ ๋ผ๋Š” ํ‘œํ˜„์€ vinyl (๋น„๋‹) ์ด๋ผ๋Š” ์˜์–ด์˜ ์ผ๋ณธ์‹ ํ‘œํ˜„์ด๋‹ค. ๋น„๋‹์žฅํŒ, ๋น„๋‹์šฐ์‚ฐ, ๋น„๋‹ ์žฅ๊ฐ‘ ๋“ฑ โ€˜๋น„๋‹โ€™ ์„ ์‚ฌ์šฉํ•œ ์˜ˆ๋“ค์ด ๋งŽ์ง€๋งŒ, ์ด๋ ‡๊ฒŒ ํ•˜๋Š” ๊ฒƒ์€ ๋ฐ˜์ฏค ๋ชจ์ž๋ผ๋Š” ๊ฒƒ์œผ๋กœ ๋œ ๊ณผํ•™์ ์ธ ํ‘œํ˜„์ด๋‹ค. ํ™”ํ•™์—์„œ โ€˜๋น„๋‹โ€™ ์ด๋ž€ ์›์ž๋‹จ์˜ ํ•˜๋‚˜๋กœ ํ™”ํ•™์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด CH2ใ€“CHโ”€ ์ด๋ฉฐ, CHโ”€ ์— ๋ฌด์–ธ๊ฐ€๊ฐ€ ๊ฒฐํ•ฉํ•˜์—ฌ์•ผ ์˜จ์ „ํ•œ ํ™”ํ•ฉ๋ฌผ์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์˜ˆ๋กœ ์—ฌ๊ธฐ์— H๊ฐ€ ๊ฒฐํ•ฉํ•˜๋ฉด ์—ํ‹ธ๋ Œ(CH2ใ€“CH2)์ด ๋˜๊ณ , ์—ผ์†Œ๊ฐ€ ๊ฒฐํ•ฉํ•˜๋ฉด ์—ผํ™”๋น„๋‹(CH2ใ€“CHCl), ํŽ˜๋‹๊ธฐ๊ฐ€ ๊ฒฐํ•ฉํ•˜๋ฉด ์Šคํ‹ฐ๋ Œ(CH2ใ€“CH-C6H5)์ด ๋œ๋‹ค. ์ด๋“ค์ด ๊ธธ๊ฒŒ ์—ฐ๊ฒฐํ•˜์—ฌ ํด๋ฆฌ์—ํ‹ธ๋ Œ(PE), ํด๋ฆฌ์—ผํ™”๋น„๋‹(PVC), ํด๋ฆฌ์Šคํ‹ฐ๋ Œ(PS)์„ ๋งŒ๋“ ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ํ†ต์ƒ ์‚ฌ์šฉํ•˜๋Š” ๋น„๋‹์ด๋ผ๋Š” ๋ช…์นญ์€ ์„์œ ํ™”ํ•™ ํ•„๋ฆ„ ์ œํ’ˆ์— ๋‘๋ฃจ ์“ฐ๊ณ  ์žˆ์ง€๋งŒ ์ด๋“ค ์ค‘์—๋Š” โ€˜๋น„๋‹โ€™์ด ์•„๋‹Œ ๊ฒƒ๋„ ์žˆ๋‹ค. ์˜ˆ๋กœ ๋‚˜์ผ๋ก ์€ ํ™”ํ•™์ ์œผ๋กœ๋Š” ๋น„๋‹๊ณผ๋Š” ๊ฑฐ๋ฆฌ๊ฐ€ ์žˆ๋‹ค. ์˜คํžˆ๋ ค ๋‚˜์ผ๋ก ์€ ๋น„๋‹จ๊ณผ ๊ฐ€๊น๋‹ค.