공간자기상관 Spatial Autocorrelation

Slides:



Advertisements
Similar presentations
Internet of Everything 사물인터넷 (IoT) 과 만물인터넷. v 1. 떠오르는 2014 IT 이슈 2. 사물인터넷 ? 3. 만물인터넷 ? 4. 요약 정리 목차.
Advertisements

폭력. 폭력이란 무엇인가 우상의 눈물 물리적인 폭력 ( 최기표 ) VS 지능적인 폭력 ( 임형우, 담임선생님 )
명륜종합사회복 지관. * 강사 : 소 찾는 아이 작가 이상희, 김매화 팀장 외 * 북아트란 : 논술교육의 중요성, 자유로운 사고, 창 의력, 논리력 * 준비물 : 색연필, 사인펜, 연필, 지우개, 딱풀, 가위.
지금 우리 지구는 HOT, HOT 에너지자원. 아이스에이지 2 시청 초 1-11 기후변화의 주된 원인인 지구 온난화 현상을 알고 온실가스의 영향을 실험을 통해 확인할 수 있다. 학습목표 초 1-11.
주간 일기 브리핑 & TOPIC 정태우 황진. 지난주 예보 분석 11/17( 화 )11/18( 수 )11/19( 목 )11/20( 금 )11/21( 토 )11/22( 일 )11/23( 월 ) 예보실황예보실황예보실황예보실황예보실황예보실황 예보실황 서울 경기 강원 영서 강원.
1 박 2 일 !!! 인천마장초등학교 유수아. 1 박 2 일 멤버 인기순 위 1 위 이승기 2 위 엄태웅 3 위 은지원 4 위 김종민, 이수근 ※인터넷에서 본것이기 때문에 사람에따라 서 다를 수 있다. ※
다초점렌즈의 oh 설계
지적기초측량 경일대학교/부동산지적학과.
석관중앙교회 5남전도회 석 관 중 앙 교 회 회원 소식 통권 05-04호 발행일 : 2005년 04월 회 장 : 장진호 집사
03월 식단표 So hot 비빔’s 덮으면 모락모락 보라매 도시락 03/21 (월) 03/22 (화) 03/23 (수)
Windows Programming 담당교수: 이상정 교수님 발표자 : 김인태 학번 :
The Beginning Of Light Skeaker mgun
지역사회복지론 1조. 요양보호시설에 대해서 황성국 임재형 이동영
공간 패턴 분석 (Statistics for Spatial Data)
Mathematics for Computer Graphics
강원대학교 공과대학 제어계측공학과 2010년도 제2학기
연장근로와 야간·휴일근로 김영호 노무사 나눔 노사관계연구소 소장 연세대 일반대학원 박사 수료 고려사이버대 법학과 외래교수
I 문학의 개념과 역할 1. 문학의 개념 (1) 언어 예술로서의 문학 (2) 소통 활동으로서의 문학
4. 목적론적 윤리와 의무론적 윤리 01. 경험주의와 이성주의 01. 경험주의와 이성주의 02. 결과론적 윤리와 공리주의
광물자원 정책비전과 과제 산업자원부 광물자원팀.
강원대학교 지구물리학과 이 훈 열 교수 참고문헌: 이희연 2003, GIS 지리정보학, 법문사
Based on Inverse Kinematics 김동철
5 불 대수 IT CookBook, 디지털 논리회로.
최소 자승 오차법 (Least Squares Method)
선형회귀분석.
빛의 합성과 색 인지 곽석우, 황병준.
1.민족의 발전과 민족 문화 창달(4)주체적 문화교류의 자세
취업정보 Ⅰ. 온라인 취업교육 정보제공 취업지원본부 취업솔루션 홈페이지 진로ㆍ취업 교육동영상
Information Retrieval (Chapter 5: 질의연산)
기초통계학 제 7장 연관성 분석 1. 상관분석 2. 교차분석
(Interpolation Values)
제 13장 예측이론.
서울아산병원 의학통계학과 울산의대 예방의학교실 이무송
기 초 통 계 인하대학교 통계학과.
Mathematical Description of Continuous-Time Signals
개항기 조선과 동아시아 박 범 한국역사입문Ⅱ.
만물의 마지막이 가까왔으니 베드로 전서 4:7-11.
Other ANOVA designs Two-way ANOVA
수학8가 대한 92~95 쪽 Ⅳ. 연립방정식 1. 연립방정식과 그 풀이 및 활용 >끝내기전에(9/9) 끝내기 전에.
지역 기획취재 지역신문의 취재방향과 보도 사례
전자계약시스템 매뉴얼.
NH Card 사후관리자료(4회차) 농협청주교육원교 수 서 영 식.
대구의 부도심 대구의 주요축 동대구 부도심 4조 강민석 / 박성균 / 최은지/ 황재현/김예지.
노드로 만들 수 있는 대표적인 서버와 용도 준비마당 Do it! Node.js 프로그래밍 이지스퍼블리싱 제공 강의 교안
제6장 소매점입지 전략 제1절 소매점입지의 중요성과 선정 제2절 소매점 입지유형 제3절 상권의 개념과 분류.
그래프와 트리 (Graphs and Trees)
게임수학 제 7 장 조명.
36. 상의 형성, Image formation 학번: 이름: 수업 중 필기, 수업 종료 후 제출.
Ch.6 계의 에너지 (Energy of a System)
Eliminating noise and other sources of error
점용접 용접부 단면분석 메뉴얼 연구개발본부 재료개발센터 강판재료개발팀 손성국 연구(T.4603) ○ ●
사도행전 13장 22절 말씀 –아멘 다 윗 을 왕 으 로 세 우 시 고 증 언 하 여 이 르 시 되 내 가 이 새 의 아 들
3장 집단상담자는 누구인가.
좀처럼 최선을 다하지 않는 한국형 홍보 PR 3. 재규어 코리아 신차 발표회 사례 분석
경찰행정과 세미나 결과를 공개해야한다. VS 비공개로 해야한다. 경찰의 근무성적평정 제도.
K Nearest Neighbor.
3-3 Gravitation.
전류는 자계에서 힘을 받는다 기계공학교육 박지훈 황인석 한만혁 이덕균.
15 향 소 제 소사고 제15회 일시|` (목) 9:00~17:00 장소|소사고등학교 교정 th
Geometry and Algebra of Projective Views
세브란스 병원 응급의학과 응급의학과 4년차 오제혁.
생보 월납 초회보험료 46% ‘뚝’ 이달 비과세 축소여파 직격탄 “팔아봐야 밑져”…은행들 울상
房思琪的初恋乐园 ‘팡쓰치’로 보는 문학의 힘 정은비.
일반대학원 사용자 매뉴얼(학생)
삶을 풍요롭게 만드는 의사소통.
7차시 2교시 입지선정 학습 목차 1. 학습개요 2. 사전학습 3. 본학습: 2교시 생 입지선정 - 레슨1. 입지선정의 방법
A Stochastic Surface Growth Model with the Dynamic Exponent z=1
Progress Seminar 양승만.
당신을 위한 NH 연금보험.
Presentation transcript:

공간자기상관 Spatial Autocorrelation

공간자기상관 정의 해석 토블러의 법칙 (Tobler’s law) 공간현상의 위치에 따른 유사성의 정도 가까이 위치한 것은 유사할 가능성이 크다 토블러의 법칙 (Tobler’s law) Everything is related to everything else, but near things are more related than distant things

(1) “가까운”의 정량화 공간가중치 공간가중치 행렬 위치들 간의 가깝고 먼 정도 행정구역 폴리곤 래스터 그리드 예) 인접하면 1, 인접하지 않으면 0 (이진 행렬) 예) 폴리곤 센트로이드 간의 거리에 반비례 래스터 그리드 예) 셀 중심 간의 거리에 반비례

공간가중치 행렬 폴리곤 인접 여부

공간가중치 행렬 폴리곤 인접 여부 이진 행렬

공간가중치 행렬 폴리곤 인접 여부 열 표준화 (row standardization) ☞ 각 가중치를 열 합계 (row sum)로 나눔  가중치 합이 1이 되도록

공간가중치 행렬 폴리곤 센트로이드 거리에 반비례 6.28 6.33 4.18 4.53

공간가중치 행렬 폴리곤 센트로이드 거리에 반비례

공간가중치 행렬 폴리곤 센트로이드 거리에 반비례

공간가중치 행렬 폴리곤 센트로이드 거리에 반비례 열 표준화 (row standardization) ☞ 각 가중치를 열 합계 (row sum)로 나눔  가중치 합이 1이 되도록

(inverse distance weighting: IDW) 공간가중치 행렬 폴리곤 센트로이드 거리를 이용할 때 옵션 가중치 적용 대상의 범위 인접 폴리곤을 대상으로 일정 거리 이내의 폴리곤을 대상으로 etc. 반비례의 제곱수 거리, 거리2, 거리3, 거리1/2에 반비례… 역 거리 가중치 (inverse distance weighting: IDW)

공간가중치 행렬 셀 인접 여부 Rook 방식 0.25 0.25 0.25 0.25 (열 표준화)

공간가중치 행렬 셀 인접 여부 Queen 방식  각각 0.125 (열 표준화)

공간가중치 행렬 셀 중심 거리에 반비례 Queen 방식  각각 0.1036, 0.1464 (열 표준화)

(inverse distance weighting: IDW) 공간가중치 행렬 셀 중심 거리를 이용할 때 옵션 가중치 적용 대상의 범위 인접 셀을 대상으로 일정 거리 이내의 셀을 대상으로 etc. 반비례의 제곱수 거리, 거리2, 거리3, 거리1/2에 반비례… 역 거리 가중치 (inverse distance weighting: IDW)

(2) “유사하다”의 정량화 공간자기상관 지수 Moran’s I (j는 i가 아닌 나머지 요소들) 는 xi와 xj 간의 공간가중치 -1 1 유사성 비유사성 랜덤 I 의 범위 엄밀하게는 0이 아니라 -1/(n-1)  기대값

Moran’s I의 통계적 유의성 x가 정규분포의 모집단에서 임의로 추출된 샘플이라고 가정하면 기대값 분산 z값 랜덤하게 재배치하여 시행을 반복했을 때 모란 I 지수의 기대값 (n이 커지면 0에 수렴) z-score

공간자기상관 지수 -1- Moran’s I 계산 연습 A값 = 3 B값 = 2 C값 = 2 D값 = 1 (나-평균)(너-평균) 이진행렬 의 경우 (기대값 = -1/3)

공간자기상관 지수 -2- Moran’s I 계산 연습 A값 = 3 B값 = 2 C값 = 2 D값 = 1 (나-평균)(너-평균) 이진행렬 (열표준화) (기대값 = -1/3)

공간자기상관 지수 -3- Moran’s I 계산 연습 A값 = 3 B값 = 2 C값 = 2 D값 = 1 (구역간 거리) 3.2 4.0 2.4 2.3 2.4 3.0 (구역간 거리) (A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D) (나-평균)(너-평균) 1/거리2 의 경우 (기대값 = -1/3)

공간자기상관 지수 -4- Moran’s I 계산 연습 A값 = 3 B값 = 2 C값 = 2 D값 = 1 (구역간 거리) 3.2 4.0 2.4 2.3 2.4 3.0 (구역간 거리) (A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D) (나-평균)(너-평균) 1/거리2 (열 표준화) (기대값 = -1/3)

연습문제 Moran’s I 계산 연습 이진행렬(열표준화), 1/거리2(열표준화)에 대한 Moran’s I를 각각 구하시오 Homework 연습문제 Moran’s I 계산 연습 x(1) = 10 x(2) = 7 x(3) = 9 x(4) = 6 이진행렬(열표준화), 1/거리2(열표준화)에 대한 Moran’s I를 각각 구하시오 A4용지에 손으로 써서 제출

R로 Moran’s I 구하기 인구 1만명당 교통사고건수

R로 Moran’s I 구하기 인구 1만명당 교통사고건수

R 패키지 인스톨 Mirror site maptools foreign spdep

R로 Moran’s I 구하기 ☞ 폴리곤으로부터 neighbor 객체 생성 ☞ neighbor로부터 list weight 객체 생성

R로 Moran’s I 구하기 결과 해석 z값(t값) 유의수준 이 데이터의 모란 I 지수 랜덤하게 재배치하여 시행을 반복했을 때 모란 I 지수의 기대값 랜덤하게 재배치하여 시행을 반복했을 때 모란 I 지수의 분산

국지적 공간자기상관 정의 전역적 vs. 국지적 개별 지점이 가지는 공간자기상관의 정도 전역적 공간자기상관 지수: 전체 구역을 하나의 지수로 요약 국지적 공간자기상관 지수: 개별 지점에 대해 각각 지수가 산출됨

Local Moran’s I Local Moran’s I 범위: -작은값 ~ +큰값 [+]: 양의 공간자기상관 (인근한 것끼리 값이 유사) [-]: 음의 공간자기상관 (인근한 것끼리 값이 비유사) 열 표준화 의 평균 =

Local Moran’s I 결과 해석 각 지점의 로컬 모란 I 로컬 모란 I의 기대값 로컬 모란 I의 분산 로컬 모란 I의 z값(t값):신빙성 로컬 모란 I의 유의수준

Local Moran’s I 단계구분도 R코드는 30페이지에 이어서 ☞ [ , 1]: 모든 row의 첫번째 column ☞ 색채배열 선택

Homework Local Moran’s I 단계구분도

팔레트

Local G* Local G* 범위: -작은값 ~ +큰값 [+]: 높은 값끼리 몰려있는 클러스터 (hot spot) [-]: 낮은 값끼리 몰려있는 클러스터 (cold spot) 자기자신도 neighbor에 포함 열 표준화했을 때와 하지 않았을 때 Gi*값 동일

Local G* R코드는 26페이지에 이어서 nb  자신도 포함하는 nb로 변환 cut(무엇을, 무엇으로)

RColorBrewer의 팔레트

Homework

공간 내삽 Spatial Interpolation

내삽과 공간 내삽 내삽 (內揷: interpolation) 공간 내삽 기지 (旣知)의 값을 이용하여, 그 사이의 미지 (未知)의 값을 추정 예) 11월18일의 환율이 1100, 11월21일의 환율이 1160이면, 11월20일은 1140??? 공간 내삽 내삽을 XY 2차원 평면에 적용 점자료  연속면 (격자화)

격자화 (Gridding)

역거리 가중치 (IDW) 가중평균 가중치 기본 모형 𝑍 𝑖 = 𝑊 𝑖𝑗 𝑍 𝑗 𝑊 𝑖𝑗 미지의 어떤 지점의 추정치는 그 부근 관측치의 가중평균으로 구함 가중치 추정하고자 하는 타겟 지점으로부터 멀리 위치하는 관측치일수록 그 가중치가 적어짐 기본 모형 가중치는 거리 α승에 반비례 (α=1/2, 1, 2, …) Zi의 추정치 = 부근 관측치 Zj의 가중평균 사용자정의 𝑍 𝑖 = 𝑊 𝑖𝑗 𝑍 𝑗 𝑊 𝑖𝑗 IDW뿐 아니라 대부분의 내삽은 가중평균 !!

역거리 가중치 (IDW) 주변 관측치의 탐색반경 예) 반경 3 이내의 관측치를 대상으로, 거리 제곱에 반비례하는 가중치 ⓔ ⓐ ⓕ ⓑ ⓒ ⓓ ⓔ [가중치의 합] [열 표준화 가중치] (a) (b) (c) (d) (e) (f) w(a) = 0.1241 w(b) = 0.3103 w(c) = 0.0691 w(d) = 0.3103 w(e) = 0.1241 w(f) = 0.0621 15*0.1241 + 14*0.3103 + 12*0.0691 + 13*0.3103 + 11*0.1241 + 10*0.0621 = 13.0549

합리적인 탐색반경 설정 상관조락거리 (Correlation Decay Distance) 관측치 pair의 거리 상관조락거리 (Correlation Decay Distance) 분리거리가 h인 관측치 pair들에 대하여 상관계수를 계산할 때, h가 커짐에 따라 상관계수가 감소하는 경향 상관계수가 1/e일 때의 거리를 상관조락거리라고 함 상관조락거리 이상의 관측치들은 서로 영향을 미치지 않는다고 보아도 됨  상관조락거리를 내삽 시의 관측치 탐색반경으로 설정 오일러 상수: 2.718…… (자연로그의 밑)

합리적인 탐색반경 설정 예들 들어 0.05도(degree) 눈금의 자로 거리를 재서 분리거리별 “관측치 쌍”들을 모아서 상관계수를 구한다면… 분리거리 관측치 pair 상관계수 0.05 (1)-(8), (3)-(16), (9)-(22), …… 0.8 0.1 (4)-(12), (5)-(9), (9)-(18), …… 0.7 0.15 (1)-(18), (5)-(16), (10)-(33), …… 0.65 …… …… ……

합리적인 탐색반경 설정 상관조락거리의 예시 거리에 따른 상관계수를 fitting하여 하나의 곡선으로 나타냄 1/e CDD

Angular Distance Weighting 거리뿐 아니라 방향을 고려한 가중치 부여 관측치가 특정방향에 집중 분포하면, 그 방향에 있는 관측치들이 과다하게 반영되는 문제 관측치가 많이 존재하는 곳은 가중치를 줄이고, 많이 존재하지 않는 곳은 가중치를 늘일 필요  관측치 분포밀도에 따른 가중치 조정 어떤 관측지점 j의 가중치(Wj)는 거리가중치 wj와 방향가중치({…}부분)를 곱하여 나타냄 k—내삽지점—j가 이루는 각 CDD 이내의 j 이외 다른 모든 관측지점 상수 (양수: 1, 2, …) 내삽지점과 관측지점(j) 간의 거리

ADW 가중치 계산 연습 CDD=2, m=2일 때 각 관측치들의 거리가중치는 동일 각 관측치들의 방향가중치는? (1) (2) (3) (4) 1 (7) ? (5) [엑셀 함수] e의 n제곱 = exp(n) 코사인 = cos(라디안) 각도  라디안 = radians(각도) (6)

과제 – ADW와 IDW 계산 연습 ADW: CDD=2, m=2 IDW: “1/d”을 가중치로 9 8 6 7 1 8 ? 9 𝑍 𝑖 = 𝑊 𝑖𝑗 𝑍 𝑗 𝑊 𝑖𝑗 10

크리깅 (Kriging) 분리거리에 따른 관측치의 비유사성을 이용한 내삽 방법 베리오그램 공분산행렬 각 관측점 가중치 가중평균으로 내삽

베리오그램 분리거리에 따른 비유사도를 측정 분리거리가 h인 관측치의 pair가 n쌍일 때 z(xi) – z(xi+h)는 두 관측치의 차 분리거리가 커짐에 따라, 베리오그램은 일반적으로 증가 베리오그램의 단위는 관측치의 단위와 동일 어떤 지점 그로부터 h만큼 떨어진 지점

Siberia Revisited 예들 들어 0.05도 눈금의 자로 거리를 재서 분리거리별 “관측치 쌍”들을 모아서 베리오그램을 구한다면… 분리거리 관측치 pair 베리오그램 0.05 (1)-(8), (3)-(16), (9)-(22), …… 1 0.1 (4)-(12), (5)-(9), (9)-(18), …… 1.5 0.15 (1)-(18), (5)-(16), (10)-(33), …… 1.8 …… …… ……

경험 vs. 이론 베리오그램 경험 베리오그램 이론 베리오그램 일정간격의 분리거리에 대한 베리오그램 값의 집합 (실제 베리오그램) 이론 베리오그램 경험 베리오그램을 하나의 식으로 나타낸 것 (모델링된 베리오그램) 적색점: 경험 variogram 청색선: 이론 variogram

이론 베리오그램의 구성요소 Range, sill, nugget Range: 베리오그램이 수렴할 때의 분리거리 Sill: range에 해당하는 베리오그램 값 Nugget: 분리거리가 0일 때의 베리오그램 값 (Y절편) range sill nugget

이론 베리오그램 모델링 경험 베리오그램  이론 베리오그램 (하나의 식으로 나타냄) Range(r), Sill(s), Nugget(n), 분리거리(h)를 이용하여 구형 모델 (spherical model) 지수형 모델 (exponential model) 가우스형 모델 (Gaussian model)

이론 베리오그램 모델링 구형, 지수형, 가우스형 구형 Spherical model 지수형 Exponential model Gaussian model 수렴후 거의 직선 약간 S자 형태 일찍 수렴후 거의 직선 완만한 곡선 형태

이론 베리오그램 최적화 Weighted Least Squares (가중 최소제곱법) 경험 vs. 이론 베리오그램의 weighted sum-of-squares를 최소화하는 range, sill, nugget을 도출함 (iteration을 통해) Nh = 분리거리 h일 때 pair개수 Th = 이론 variogram값 (선) Eh = 경험 variogram값 (점) 의 최소화

크리깅 공분산 행렬 공분산 = Sill – Variogram ☞ 베리오그램을 이용하여 “관측치 공분산행렬”을 작성 공분산 (유사도) Sill Variogram (비유사도) z2와 z3의 “분리거리”가 0.5이면  베리오그램은 2.7이고  공분산은 3.5이다 분리거리

크리깅 미지의 지점(z0) 내삽에 필요한 각 관측지점(z1, z2, z3, z4)의 가중치 도출을 위하여 공분산행렬을 이용 분리거리를 알면  베리오그램을 알 수 있고  공분산을 알 수 있음 4개 관측치의 공분산행렬 타겟지점 z0와 4개 관측치의 공분산행렬 내삽치 라그랑지 파라미터  가중치 합이 1이 되도록 해줌 XY=Z Y=X-1Z 가중평균 가중치 관측치 𝑧 0 = 𝑖 𝜆 𝑖 𝑧 𝑖 𝑖 𝜆 𝑖 타겟지점 z0에 대한 4개 관측치의 <가중치행렬> (ω 값은 사용되지 않고 폐기)

크리깅 계산 연습 z1 z4 z0? z2 z3 타겟지점과 관측치의 공분산행렬 관측치의 공분산행렬 XY=Z Y=X-1Z 관측치의 가중치행렬 (우리가 구하고자 하는 것)

크리깅 계산 연습 z1 z4 z0? z2 z3 ☞ 행렬에서 하나의 row가 될 것임 ☞ 역행렬 함수 ☞ 행렬의 곱은 %*% 로우 기준으로 묶음을 구성 ☞ 역행렬 함수 ☞ 행렬의 곱은 %*% λ1=0.3900 λ2=0.1796 λ3=0.0890 λ4=0.3414 (가중치) 내삽치 z0 = λ1z1 + λ2z2 + λ3z3 + λ4z4 = 10.0566