5. 비제약 최적설계의 수치해법 (Numerical Methods for Unconstrained Optimum Design) NLP (Nonlinear Programming) 최적설계의 수치해법 초기설계 추정 최적성 조건이 만족할 때 까지 반복
비제약 최적화문제의 분류
Unconstrained Optimization 일차원 최소화 (One Dim. Minimization) 최속강하법 (Steepest Descent Method) 공액경사도법 (Conjugate Gradient M.) 뉴톤의 방법 (Newton’s Method) 유사뉴톤방법 (Quasi-Newton Method) 공학적 응용 (Engineering Applications) 최적설계 변환법 (Transformation Methods)
5.2 수치알고리즘의 일반개념 Analytical approach: Numerical methods: Optimality conditions Candidate local minimum design Numerical methods: Initial design Iterations until optimality conditions satisfied
5.2.1 A General Algorithms Vector form 현재 설계에서의 미소 변화 Component form
Change in design 현재 설계에서의 미소 변화 Step size Search direction
Change in design
5.2.2 Descent Step Idea (강하, 감소) Desirable direction of design change (바람직한 설계 변화의 방향)
Searching Direction (탐색방향)
Descent direction (강하방향) Descent condition (강하조건)
5.2.3 Convergence of Algorithms The property of convergence to a local optimum point irrespective of the starting point 5.2.4 Rate of Convergence Faster algorithms use 2nd order information of the function Newton’s Method, Quasi-Newton method
5.3 One-dimensional Minimization Step size Search direction
5.3 One-dimensional minimization 5.3.1 Problem Definition 5.3.2 Equal Interval Search (등간격 탐색) 5.3.3 Golden Section Search (황금분할 탐색) 5.3.4 Polynomial Interpolation (다항식 보간법)
Problem Definition 설계변화 탐색 방향을 찾았다면 known unknown
Change in design
일변수 함수로의 환원 기하학적 의미 목적함수의 강하조건
목적함수의 강하조건 음수
Step size 계산법 Step size - 이동거리 이동거리 계산법 해석적 방법 (Analytical Method) 수치적 방법 (Numerical Method)
Analytical Method for step size 를 최소화하기 위한 필요조건 충분조건
Numerical method for step size Unimodal function if =
Equal Interval Search (등간격 탐색) 초기추정
Equal Interval Search (등간격 탐색) 불확정 구간의 감소
5.3 Golden Section Search (황금분할탐색) Initial bracketing (최소치의 초기 추정) Fibonacci sequence – Golden ratio Reduction of interval of uncertainty (불확정 구간의 축소)
Fibonacci Sequence 피보나치 수열 황금비
황금분할법 - 초기추정
황금분할법 - 초기구간 추정
불확정구간 축소
5.4 Steepest Descent Method (최속강하법) 탐색방향을 구하는 방법 First order method: Steepest Descent Method Second order method: Newton’s Method Desirable direction of design change (바람직한 설계 변화의 방향)
Steepest Descent Algorithm
5.5 Conjugate Gradient Method (공액경사도방법) By Fletcher & Reeves (1964) Very simple and effective modification of the Steepest Descent Method
5.5 Conjugate Gradient Method (공액경사도방법)
5.6 Newton’s Method 2nd order information 사용
5.6 Newton’s Method Modified Newton’s Method
Example 5.16
Marquardt Modification DFP (Davidon,Fletcher,Powell) Approximate Inverse of Hessian BFGS (Broyden,Fletcher,Goldfarb,Shannon) Update Hessian at every iteration