Data Communications 제 6 장 신호변환과 신호변환기 정보보호학과 양 계 탁
목차 6.1 디지털-디지털 부호화 6.2 디지털-아날로그 부호화 6.3 아날로그-디지털 부호화 6.4 아날로그-아날로그 부호화
디지털-디지털 부호화(1/14) 0 과 1로 표현된 디지털 정보를 디지털 신호로 표현 디지털-디지털 부호화 과정
디지털-디지털 부호화(2/14) 디지털-디지털 부호화 종류
디지털-디지털 부호화(3/14) 단극형 (Unipolar) 하나의 전압 레벨만 사용 단극형 부호화 단순하고 구현 비용이 저렴
디지털-디지털 부호화(4/14) 단극형 부호화의 문제점 직류성분(DC Component) 문제 동기화 문제 신호의 평균 진폭이 0이 아니기 때문에 직류성분 발생 직류성분을 다룰 수 없는 매체는 통과 불가능 동기화 문제 신호가 연속된 0 이나 1 인 경우 신호의 변화가 없으므로 수신측에서 각 비트의 시작과 끝을 결정할 수 없는 문제 발생 별도의 선로로 클럭 신호를 보냄으로 동기화 문제를 해결할 수 있으나 비용이 많이 들기 때문에 사용 안함
디지털-디지털 부호화(5/14) 극형 (Polar) 극형 부호화는 (+) 와 (-) 전압 두 개의 레벨 사용 NRZ (Non-Return to Zero) 인코딩이나 디코딩을 요구않음 저속 통신에 널리 사용 NRZ-L (Non-Return to Zero Level)
디지털-디지털 부호화(6/14) NRZ-I (Not-Return to Zero Invert)
디지털-디지털 부호화(7/14) RZ (Return to Zero) (+), 0, (-) 3개의 전압 레벨을 사용 0 일 경우 (-)전압으로 시작해서 중간에 0 레벨로 복귀 1 일 경우 (+)전압으로 시작해서 중간에 0 레벨로 복귀 동기화 문제를 해결하지만 상대적으로 많은 대역폭 사용
디지털-디지털 부호화(8/14) Biphase 전압 레벨이 중간에 다른 전압 레벨로 전환 동기화 문제 해결 Manchester
디지털-디지털 부호화(9/14) Differential Manchester 0 인 경우 이전 패턴 유지 1 인 경우 패턴이 반대로 바뀜
디지털-디지털 부호화(10/14) 양극형 (Bipolar) (+), 0, (-) 3개의 전압을 사용 Bipolar AMI (Bipolar Alternate Mark Inversion) 0 전압은 0을 나타내고 (+), (-)전압은 1을 표현 연속적인 0이 오면 동기화 문제 발생 동기화 문제를 해결하기 위해 B8ZS 와 HDB3 사용
디지털-디지털 부호화(11/14) B8ZS
디지털-디지털 부호화(12/14) HDB3
디지털-디지털 부호화(13/14) 신호 변환기 (Signal Conversion Device) DSU (Digital Service Unit) 전송 : 직렬 Unipolar 신호를 변형된 Bipolar 로 바꿔서 전송 수신 : 변형된 Bipolar 신호를 직렬 Unipolar 로 바꿔서 수신 고속, 양질의 데이터를 전송하는 디지털 전송방식
디지털-디지털 부호화(14/ 14) CSU (Channel Service Unit) T1 또는 E1 트렁크를 수용할 수 있는 장비 T1은 64Kbps 24채널, E1은 64Kbps 30채널 멀티플렉서가 채널들을 모아서 전송하는 트렁크 방식으로 전송
디지털-아날로그 부호화(1/ 18) 디지털 정보를 아날로그 신호로 전송 디지털-아날로그 부호화 과정
디지털-아날로그 부호화(2/ 18) 디지털-아날로그 부호화 종류
디지털-아날로그 부호화(3/ 18) 진폭편이변조 (ASK) 진폭의 변화로만 0 과 1 을 표현 1보오당 1비트의 신호 전송 장점 : 회로 구성이 간단하고 가격이 저렴 단점 : 잡음이나 신호의 변화에 약함
디지털-아날로그 부호화(4/ 18) 주파수편이변조 (FSK) 주파수의 변화로만 0 과 1을 표현 1보오당 1비트의 신호 전송 진폭편이변조 방식보다 잡음에 강하고 회로도 간단하여 데이터 전송에 많이 사용
디지털-아날로그 부호화(5/ 18) 위상편이변조 (PSK) 위상의 변화로만 0 과 1을 표현 위상의 변화를 다양하게 해서 한 위상에 여러 비트 표현 가능 위상을 계속 늘리면 위상차가 작아져 잡음에 의한 신호 지연이 자주 발생 위상의 종류 위 상 설 명 2 위상 0은 0˚, 1은 180˚로 위상을 표현 4 위상 90˚간격으로 위상을 표시 (2비트) 8 위상 45˚간격으로 위상을 표시 (3비트)
디지털-아날로그 부호화(6/ 18) 2-PSK 4-PSK
디지털-아날로그 부호화(7/ 18) 구상진폭변조 (QAM) 위상편이변조와 진폭편이변조의 복합형태
디지털-아날로그 부호화(8/ 18) 8-QAM 신호의 시간영역
디지털-아날로그 부호화(9/ 18) 신호 변환기 전송율 변조 기능 : 디지털 신호를 아날로그화 복조 기능 : 아날로그 신호를 디지털화 모뎀 : 변조 기능 과 복조 기능을 가지고 있는 기기 전송율 일초동안에 송신 또는 수신할 수 있는 비트수 단위 : bps
디지털-아날로그 부호화(10/ 18) 대역폭 전달할 수 있는 신호의 주파수에 상한선과 하한선 범위 더욱 안전한 통신을 위해 양쪽의 가장자리 부분은 사용 안함
디지털-아날로그 부호화(11/ 18) 모뎀 속도 아날로그 부호화 방식에 따라 그리고 전송 방식에 따라 모뎀 속도 결정 ASK 1보오당 1비트 전송 단방향이나 반이중 전송시는 대역폭과 전송율은 같고 전이중 전송시에 전송율은 대역폭의 ½ FSK 신호 변조시 두개의 ASK 스펙트럼들을 조합 단방향이나 반이중 전송시 요구되는 대역폭은 전체 대역폭에서주파수 편이를 뺀 값이며 전이중 전송은 뺀 값의 ½ PSK, QAM 위상차를 이용하여 다양한 전송속도 제공 위상차를 4, 8, 16배로 늘리면 전송속도는 2, 3, 4배로 증가
디지털-아날로그 부호화(12/ 18) 모뎀 분류 모뎀 표준 전송율, 대역폭, 속도 이외의 방법으로도 모뎀을 분류 ex) 동기방식, 이용 대역폭, 사용 가능 거리, 포트 수, 속도, 등화방식, 사용회선, 위치 등 모뎀 표준 벨 모뎀 : 독점적인 기술의 개발로 사실상의 표준 제공 ITU-T 모뎀 : ITU-T에서 지정한 규약으로 V시리즈 제공 대표적인 V시리즈로 V.22bis, V.32, V,32bis, V.34 등
디지털-아날로그 부호화(13/ 18) 56K 모뎀 별다른 장비나 기술이 필요없는 편리한 설치 다운로드 : 56Kbps 업로드 : 33.6Kbps
디지털-아날로그 부호화(14/ 18) 케이블 모뎀 기존 케이블TV 망을 이용하여 데이터 통신 서비스 제공
디지털-아날로그 부호화(15/ 18) 장점 단점 빠른 접속 속도 월정액으로 요금 부담이 해소 전화와 무관하게 사용 데이터를 PC에 보내기만 하는 단방향 통신 이론적인 속도보다 실제속도가 낮음 같은 라인에 연결된 사람이 많으면 속도 저하
디지털-아날로그 부호화(16/ 18) DSL 모뎀 DSL은 라인이 아닌 모뎀을 의미 기존의 전화망과 같은 1쌍의 동선을 이용해 대역폭을 최대한 확장하며 관로 내의 누화를 제어 xDSL은 전송거리, 상향과 하향 전송속도, 비율, 응용서비스 등의 기준으로 구분
디지털-아날로그 부호화(17/ 18) DSL에서 사용하는 변조 방식 DMT(Discrete Multi Tone) 톤(Tone) : 사용 주파수 대역을 4Khz로 균등 분할한 영역 각 톤마다 QAM을 사용하여 데이터 변조 CAP(Carrierless Amplitude and phase) 전송 데이터를 2개의 기저대역으로 분할 In-phase 와 Quadrature-phase로 변조후 두 신호를 합하여 전송
디지털-아날로그 부호화(18/18) DMT 방식과 CAP 방식 비교 DMT CAP 장 점 다양한 속도를 지원 가입자 선로에서 임펄스 및 잡음에 유리한 특성 잡음억제 기능 간섭현상이 CAP보다 양호 주파수가 적절히 배치되었을 경우 선로에서 임펄스및 잡음에 유리 알고리즘이 간단하여 칩 구성이 단순하고 설계 용이 여러 종류의 xDSL에 적용 저전력을 소모 단 점 주파수 대역별 변조로 칩셋이 비쌈 에러 체크가 복잡 데어터 손실이 많음 제공 속도 상향 최대 768 Kbps 하향 최대 8Mbps 상향 최대 1Mbps 하향 최대 7Mbps