Types of variation among plants

Slides:



Advertisements
Similar presentations
Chapter 7 MEIOSIS( 감수분열 ). Why must organisms reproduce?
Advertisements

1 Chapter 2 Basic Physics of Semiconductors  2.1 Semiconductor materials and their properties  2.2 PN-junction diodes  2.3 Reverse Breakdown.
김예슬 김원석 김세환. Info Northcutt Bikes Northcutt Bikes The Forecasting problem The Forecasting problem The solution 1~6 The.
무엇이 사람과 침팬지를 다르게 만들었을까 ? (DNA 비교에서는 인간과 침팬지의 차이가 거의 나지 않는다.! ?
휴먼게놈프로젝트와 컴퓨터 Human genome project and Computer science
Searching for genes involved in common complex trait diseases
2장. 분자생물학에서의 유전적 분석 분자생물학.
검출기 눈, 사진, Photoelectric device, Photomultipliers, Image intensifiers, Charged Coupled Device,
노 화 노화란 무엇인가? 노화 현상의 특성 (노인의 특성) 노화 현상이 나타나는 이유.
Sources of the Magnetic Field
Chapter 7 ARP and RARP.
10. Evolutionary programming
Journals & Conferences
인재채용의 경쟁우위확보를 위한 역량기반의 구조적 면접 컨설팅 추진방안
Cellular Automata의 창발적 특성을 정성적 및 morphological 분석방법 이해
Chapter 3 데이터와 신호 (Data and Signals).
GENETIC TECHNOLOGY 생물학개론 15주차 강의
변화관리의 출발.
18장 자연선택과 적응.
EPS Based Motion Recognition algorithm Comparison
신제품 출시 - EliA PR3S.
CHAPTER 21 UNIVARIATE STATISTICS
HOW INHERITED TRAITS ARE TRANSMITTED 생물학개론 11주차 강의
Genetic Algorithm 신희성.
1 도시차원의 쇠퇴실태와 경향 Trends and Features of Urban Decline in Korea
Chapter 2. Finite Automata Exercises
숭실대학교 마이닝연구실 김완섭 2009년 2월 8일 아이디어  - 상관분석에 대한 연구
제17장 DNA가 바뀔 때.
Chapter 12 다중 접속 (Multiple Access).
계수와 응용 (Counting and Its Applications)
Developmental Screening
자동제어 영남대학교 기계공학부 정 병 묵.
Chapter 31 Faraday’s Law.
Medical Instrumentation
4-1 Gaussian Distribution
프로젝트의 관리 및 평가 1. 프로젝트의 관리 2. 프로젝트의 경제성 평가의 개요 2. 평가기법의 모형.
패러다임과 과학혁명.
Modeling one measurement variable against another Regression analysis (회귀분석) Chapter 12.
생산운영관리 입문 CHAPTER01 (Introduction to Operations Management)
제4장 : 노동력 구조 1. 한국의 노동력 구조 2. 일본의 노동력구조 3. 유럽의 노동력 구조 4. 노동력 구조의 변화와 정책방향 동영상 학습과제 1. 노동력 구조와 의미는? 2. 각국의 노동력 구조를 조사하는 방법은? 3. 각국의 노동력 구조의 변화추이는? 4.
Inferences concerning two populations and paired comparisons
Course Guide - Algorithms and Practice -
Physical Factors: Mixing and Flow 박선연.
Statistical inference I (통계적 추론)
Hijacking Bitcoin : Routing Attacks on Cryptocurrencies Maria Apostolaki Aviv Zohar Laurent Vanbever Presentor Geun Woo Lim Many parts of.
제 세 동.
Machine Evolution.
2010년 1분기 정리 미토콘드리아 유전체 연구팀 (mtDNA research lab) (금)
제5장 진화와 생물다양성 생명의 기원 원시지구에서 생명이 어떻게 출현했을까?
이산수학(Discrete Mathematics)
제 4 장 유전자 알고리즘 (Genetic Algorithm)
2. 기초 집단유전학 천안연암대학 주종철 본 교재는 故 정흥교수의 강의 교재를 기반으로 일부 편집하여 작성한 것입니다.
Modeling one measurement variable against another Regression analysis (회귀분석) Chapter 12.
점화와 응용 (Recurrence and Its Applications)
현대 진화 생물학의 주요개념 (Key Concepts of Modern Evolutionary Biology)
1. 관계 데이터 모델 (1) 관계 데이터 모델 정의 ① 논리적인 데이터 모델에서 데이터간의 관계를 기본키(primary key) 와 이를 참조하는 외래키(foreign key)로 표현하는 데이터 모델 ② 개체 집합에 대한 속성 관계를 표현하기 위해 개체를 테이블(table)
해양생태학 2016년 1학기 안순모.
Definitions (정의) Statistics란?
사례 연구.
The R&D Boundaries of the Firm: An Empirical Analysis
Where the Crossovers are: Recombination distributions in mammals
Hongik Univ. Software Engineering Laboratory Jin Hyub Lee
검출기 눈, 사진, Photoelectric device, Photomultipliers, Image intensifiers, Charged Coupled Device,
Biological Oceanography
Group Dynamics -Team Ministry
Chapter 2. Coulomb’s Law & Electric Field Intensity
Chapter 4. Energy and Potential
Progress Seminar 이준녕.
Chapter 7: Deadlocks.
Presentation transcript:

Types of variation among plants Plant Breeding 2009 Fall Types of variation among plants Two fundamental sources of change in phenotype P = G (genotype) + E (environment) Environmental variation Plants exhibit differences in the expression of some traits by non-uniform environments Clones may perform differently under different environments Inferior genotypes can outperform superior genotypes under uneven environmental conditions Plant breeders use statistical tools and other selection aids to reduce the selection errors Chapter 2

Types of variation among plants Plant Breeding 2009 Fall Types of variation among plants Two fundamental sources of change in phenotype P = G (genotype) + E (environment) Genetic variability Genetic variability is consistently expressed generation after generation -> heritable variation Breeders seek to change the phenotype permanetly and heritably by changing the genotypes that encode it Biotechnological tool (DNA markers) allows to access genetic diversity at the molecular level Chapter 2

Origin of genetic variability Plant Breeding 2009 Fall Origin of genetic variability Genetic recombination -applies only to sexually reproducing species -represents the primary source of variability -occurs via the cellular process of meiosis - Creation of non-parental types in the progeny of a cross, through the physical exchange of parts of homologous chromosomes -include only genes that are present in the parents -no genetic linkage => new genetic recombination is predictable Presence of genetic linkage => the frequency of genetic recombination is estimated based on the distance between gene loci on the chromosomes at the molecular level Chapter 2

Origin of genetic variability Plant Breeding 2009 Fall Origin of genetic variability Ploidy modifications Modifications in chromosome number as a result of hybridization between unidentical genotypes or abnormalities in the nuclear division processes Polyploid: individuals with multiples of the basic set of chromosomes) Aneuploidy: individuals with multiples of only certain chromosmes or deficiencies of others Chapter 2

Origin of genetic variability Plant Breeding 2009 Fall Origin of genetic variability Mutation Important in biological evolution as sources of heritable variation Spontaneously arise in nature as a result of errors in DNA replication and by chromosomal aberrations (deletion, duplication, inversion, translocation) The molecular basis of mutation Modification of the structure of DNA Base substitution Base deletion/addition -can be induced by breeders using irradiation/chemical -may useful, deleterious, or neutral Chapter 2

Scale of variability Qualitative variation Plant Breeding 2009 Fall Scale of variability Qualitative variation categorized by counting and arranging into distinct non-overlapping groups (=discrete variation) Easy to classify, study, and utilizes in breeding Controlled by one or a few genes and inherited simply Amenable to Mendelian analysis Transfer of single gene in GMO (Bt, Ht resistance) Breeding qualitative traits is straightforward Single gene vs. multiple gene Dominant gene vs. recessive gene Chapter 2

Scale of variability Qualitative variation Plant Breeding 2009 Fall Scale of variability Qualitative variation categorized by counting and arranging into distinct non-overlapping groups (=discrete variation) Easy to classify, study, and utilizes in breeding Controlled by one or a few genes and inherited simply Amenable to Mendelian analysis Transfer of single gene in GMO (Bt, Ht resistance) Breeding qualitative traits is straightforward Single gene vs. multiple gene Dominant gene vs. recessive gene Chapter 2

Scale of variability Quantitative variation Plant Breeding 2009 Fall Scale of variability Quantitative variation occur ona continuum and cannot be placed into discrete groups by counting Intermadiates exist between the extreme expressions Controlled by many to numerous genes (polygenic) with effects that are too small to be individually distinguised Minor gene vs. major gene -trait expression is very significantly modified by the variation in environmental factos -Breeding is more challenging Chapter 2

유전자 발현에 미치는 환경적 영향: 표현형 = 유전형 + 환경. 형질에 따라 환경의 영향 정도가 Plant Breeding 2009 Fall 유전자 발현에 미치는 환경적 영향: 표현형 = 유전형 + 환경. 형질에 따라 환경의 영향 정도가 다름. (a) 환경적 영향이 약하며 두 부모본의 형질이 F2 집단에서 쉽게 관찰됨. (b) 환경적 영향이 강하며 분리집단에서 표현형의 차이가 연속적이고 뚜렷하지 않음 Chapter 2

Concept of a population and gene pool Plant Breeding 2009 Fall Concept of a population and gene pool Breeding methods focus on individual plant improvement? or focus on improving populations? -Plant pop. impact their genetic structure -Genetic structure determins its capacity to be changed by selection -Understanding population structure is key to deciding the plant breeding options and selection strategies. Population : a group of sexually interbreeding individuals Capacity to interbreed implies that every gene within the group is accessible to al members through the sexual process. Chapter 2

Concept of a population and gene pool Plant Breeding 2009 Fall Concept of a population and gene pool Gene pool: total number and variety of genes and alleles in a sexually reproducing pop. that are available for transmission to the next generation. Pop. genetics: how the frequencies of alleles in a gene pool change over time To understand population structure and its importance to plant breeding, it si important to understand, - the type of variability present - underlying genetic control - mode of selection for changing the genetic structure Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool The genetic properties(structures) of a pop. are influenced in the process of transmission of gene from one generation to the next by four major factors Population size Differences in fertility and viability Migration and mutation Mating system Population genetics uses mathmetical models to attempt to describe population phenomena (like changes in gene frequency) Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool Calculating gene frequency Conditions.. A large pop. in which random mating occures No mutation or gene flow between this pop. and others No selective adventage for any genotype Normal meiosis One locus (A) with two allele (A, a) (diploid) (2D+H)/2N = (D+1/2H)/N= p, q = 1 - p p = frequency of A allele, q = frequency of a allele D = AA, H = Aa, N= no. of individual Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool The frequency of AA = p2 The frequency of Aa = 2pq The frequency of aa = q2, and then p2 + 2pq + q2 = 1 -> Hardy-Weinberg equilibrium (bewteen genes and genotype) If N=80, D=4, H=24, calculate the genotype frequencies for the next generation following random mating And calculate the frequencies of the genes in the next generation.. Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool As you calculated, allele freq. remains unchanged, while the genotypic freq. changes.. However, in the subsequent generations, both the genotype and gene freq. will remain unchanged, provided: Random mating occurs in a very large diploid pop. Allele A and allele a are equally fit There is no differential migration of one allele into ot out of the population The mutation rate of allele A is equal to that of allele a -> the variability does not change from one generation to another Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool Hardy-Weinberg equilibrium Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool When the presence of genetic linkage Chapter 2

Mathematical model of a gene pool Plant Breeding 2009 Fall Mathematical model of a gene pool Inbreeding and its implications in plant breeding Chapter 2

양적형질 통계 분석  통계량 (평균, 분산, 표준편차, 표준오차) - 표현형 분산 (phenotype variation, VP) = 유전분산 (genetic variance, VG) + 환경분산 (Environmental variance, VE) - 유전분산 = 상가적 분산 (Additive genetic variance, VD , 고정 가능한 분산) + 우성분산 (Dominance variance, VH) aa Aa AA h -d d

양적형질 통계 분석 유전자형 AA Aa aa 유전자형빈도 (fi) ¼ ½ ¼ F2 집단에서 유전분산 및 표현형 분산의 분산성분 VG = (1/2)D + (1/4)H VF2 = (1/2)D + (1/4)H + E  여교배 집단에서 유전분산 및 표현형 분산의 분산성분 VB = (1/2)D + (1/4)H + 2E 유전자형 AA Aa aa 유전자형빈도 (fi) ¼ ½ ¼ 유전자효과 d h -d

유전력 (Heritability)  후대와 친세대 간의 유사성정도를 나타내는 통계량  양적형질의 표현형에 작용하는 유전적 요인의 중요성과 친의 특성이 후대로 유전되는 정도를 나타내는 척도  선발육종에서 선발의 난이성과 개량의 정도를 예측하는 지표  넓은 의미의 유전력( broad-sense heritability, hB2) - 전체 표현형 분산(VP)에 대한 유전분산(VG)의 비율 hB2 =(D+H)/(D+H+E)  좁은 의미의 유전력( narrow-sense heritability, hN2) - 전체 표현형 분산(VP)에 대한 상가적 유전분산(VD)의 비율 hN2 =(D)/(D+H+E)

Q1. 꽃의 길이가 다른 담배품종 간 교배집단에서 각 세대의 분산은 다음과 같다. 유전력을 구하라 Vp1 = 7.65, Vp2 = 8.53, VF1 = 8.25, VF2 = 40.96 힌트: hB2 =(VF2 -VE) / VF2 Q2. 개화기간이 다른 담배품종 간 교배집단에서 각 세대의 분산은 다음과 같다. 유전력을 구하라 Vp1 = 48, Vp2 = 32, VF1 = 46, VF2 = 130.5, VB1 = 88.5, VB2 = 98.5 힌트: hN2 = [2VF2 - (VB1 +VB2 )] / VF2