Download presentation
Presentation is loading. Please wait.
1
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실
2
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Modern Theories of Acids, Bases, and Salts Acid-Base Equlibria Sörensen’s pH Scale Species Concentration as a Function of pH Calculation of pH Acidity Constants
3
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Arrhenius theory Acid : substance that liberates H + Base : substance that supplies OH -
4
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Acid : a substance, charged or uncharged, that is capable of donating a proton Base : a substance, charged or uncharged, that is capable of accepting a proton from acid
5
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Protophilic : Capable of accepting protons from the solute : acetone, ether “ 염기성용매 ” Protogenic : proton -donating compound : acetic acid Amphiprotic : Both proton accptors and proton donors : water, alcohols Aprotic : neither accept nor donate protons : hydrocarbons
6
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Acid : a molecule or ion that accepts an electron pair to form a covalent bond. Base : a substance that provides the pair of unshared electrons by which the base coordinates with an acid.
7
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 HAc + H 2 O H 3 O + + Ac - Acid1 Base2 Acid2 Base1 R f = k 1 [ HAc ] 1 [ H 2 O ] 1 R r = k 2 [ H 3 O + ] 1 [ Ac - ] 1 k 1, k 2 = specific reaction rate [ ] = concentration Acid -base pair, conjugate pair = Acid1 and Base1, Acid2 and Base2 k 1 k2k2
8
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 R f = R r K = k 1 / k 2 = K a ( ionization constant / dissociation constant) K a = 55.3K = Brönsted - Lowry theory : K a = acidity constant HAc + H 2 O H 3 O + + Ac - (c-x) x x K a = c >> x, c - x c K a x 2 = K a C x = [ H 3 O + ] = (7-16) [ H 3 O + ] [ Ac - ] [ HAc ] [ H 2 O ] [ H 3 O + ] [ Ac - ] [ HAc ] x2x2 c - x x2x2 c
9
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 B + H 2 O BH + + OH - K b = x = [ OH - ] = (7-24) [BH + ] [ OH - ] [ B ]
10
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 [H 3 O + ] [ OH - ] [H 2 O ] 2
11
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 K a K b = = [ H 3 O + ] [ OH - ] = K w (7-12)(7-33) K b = K w / K a K a = K w / K b [ H 3 O + ] [ B - ] [ HB ] [BH + ] [ OH - ] [B - ]
12
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Triprotic (tribasic)acid, such as phosphoric acid, ionizes in three stages. H 3 PO 4 + H 2 O = H 3 O + + H 2 PO 4 - = K 1 = 7. 5 10 - 3 H 2 PO 4 - + H 2 O = H 3 O + + HPO 4 2 - = K 2 = 6.2 10 - 8 HPO 4 2- + H 2 O = H 3 O + + PO 4 3 - = K 3 = 6.2 10 - 13 [ H 3 O + ] [H 2 PO 4 - ] [H 3 PO 4 ] [ H 3 O + ] [H 2 PO 4 2- ] [H 2 PO 4 - ] [ H 3 O + ] [H 2 PO 4 2- ] [H 2 PO 4 - ]
13
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Triprotic (tribasic)acid, such as phosphoric acid, ionizes in three stages. PO 4 3 - + H 2 O HPO 4 2 - + OH - K b1 = = 4.8 10 - 2 HPO 4 2 - + H 2 O H 2 PO 4 - + OH - K b2 = = 1.6 10 - 7 H 2 PO 4 - + H 2 O H 3 PO 4 + OH - K b3 = = 1.3 10 - 12 [ H 3 PO 4 ] [OH - ] [ H 2 PO 4 2 ] [ HPO 4 2 - ] [OH - ] [ PO 4 3- ] [ H 2 PO 4 - ] [OH - ] [ PO 4 2 - ]
14
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 H n A(parent acid) : there are n+ 1 possible species in solution. H n A + H n-j A -j + + H A - (n -1) + A n - j represents the number of protons dissociated from the parent acid and goes from 0 to n. C a = total C oncentration of a ll species [H n A ] + [H n-j A -j ] + + [H A - (n -1) ] + [A n - ] = C a Conjugate acid-base pair : K j K b(n+1- j) = K w ( K j : various acidity constant) K 1 K b3 = K 2 K b2 = K 3 K b1 (Phosphoric acid system)
15
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 H n A(parent acid) : there are n+ 1 possible species in solution. H n A + H n-j A -j + + H A - (n -1) + A n - Amphoteric(ampholyte) : [H n-j A -j ],, [H A - (n -1) ], + NH 3 CH 2 COO -. Zwitterion : + NH 3 CH 2 COO -.; electrically neutral. Isoelectric point : The pH at which the Zwitterion concentration is a maximum
16
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 ‘Zwitter’ in German means 'between'. A zwitterion is a molecule that contains both a negatively and a positively charged group. These are bonded through intermediate groups. Amino acids and proteins behave as zwitterions.
17
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Depending on the pH of a solution, macromolecules such as proteins which contain many charged groups, will carry substantial net charge, either positive or negative.
18
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Polyelectrolytes - molecules that contain multiple same charges, e.g.DNA and RNA Polyampholytes - molecules that contain many acidic and basic groups - the close association allows these molecules to interact through opposing charged groups.
19
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Depending on the pH of a solution, macromolecules such as proteins which contain many charged groups, will carry substantial net charge, either positive or negative. Cells of the body and blood contain many polyelectrolytes (molecules that contain multiple same charges, e.g.DNA and RNA) and polyampholytes (many acidic and basic groups) that are in close proximity. The close association allows these molecules to interact through opposing charged groups
20
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 pH = log = – log [ H 3 O + ] pH = - log a H+ hydronium ion concentration activity coefficient = hydronium ion activity pH = - log ( c ) p ; negative logarithm of the term. Ex) pOH = – log [OH - ], pK a = – log K a, pK w = – log K w pH + pOH = pK w pK a + pK b = pK w [ H 3 O + ] 1
21
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 H n A : there are n+ 1 possible species in solution. 0 =, 1 = C a = total acid, = fraction In general, j = and n = 0 + j + + n-1 + n = 1 * value K 1 = =, 1 = K 2 = = =, 2 = in general, j = (7-69) [ A - n ] CaCa [H n A ] CaCa [H n-1 A -1 ] CaCa [H n-j A -j ] CaCa [H n-2 A 2- ] [H 3 O + ] 2 K 1 [H n A] (K 1 K 2 …K j ) 0 [H 3 O + ] j [H n-1 A - ] [H 3 O + ] [H n A] 2 C a [H 3 O + ] 2 0 C a K1 1 C a [H 3 O + ] 0 C a [H n-2 A 2- ] [H 3 O + ] [H n-1 A - ] K10K10 [H 3 O + ] K1K20K1K20 [H 3 O + ] 2
22
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 0 + + + = 1 0 = [H 3 O + ] n / { [H 3 O + ] n + K 1 [H 3 O + ] n-1 + K 1 K 2 [H 3 O + ] n-2 + K 1 K 2... K n } { D = [H 3 O + ] n + K 1 [H 3 O + ] n-1 + K 1 K 2 [H 3 O + ] n-2 + K 1 K 2... K n } 0 = [H 3 O + ] n / D [H n A] = [H 3 O + ] n C a / D [H n-j A -j ] = K 1 K j [H 3 O + ] n-j C a / D {C a = [H n A ] + [H n-j A -j ] + + [H A - (n -1) ] + [A n - ]} K10K10 [H 3 O + ] (K 1 K 2 …K j ) 0 [H 3 O + ] j
23
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Calculation of pH Proton Balance Equations (PBE) Express the concentration of all species as a function of equilibrium constants and [H 3 O + ] Solve the resulting expression for [H 3 O + ] Check all assumptions If all assumptions prove valid, convert [H 3 O + ] pH Eqs. (7-73) to (7-76)
24
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Proton Balance Equations (PBE) a) Always start with the species added to water ( Na 2 HPO 4 ) b) On the left side of the equation, place all species that can from when protons are consumed by the starting species. ( [H 2 PO 4 - ],[H 3 PO 4 ]) c) On the right side of the equation, place all species that can form when protons are released from the starting species.( [PO 4 3- ] ) d) Each species in the PBE should be multiplied by the number of protons lost or gained when it is formed from the starting species e) Add [H 3 O + ] to the left side of the equation, and [ OH - ] to the right side of the equation. Ex) [H 3 O + ] + [H 2 PO 4 - ] + 2[H 3 PO 4 ] = [ OH - ] + [PO 4 3- ]
25
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Proton Balance Equation What is the PBE when H 3 PO 4 is added to water? The species H 2 PO 4 - forms with the release of one proton The species HPO 4 -2 forms with the release of two protons The species PO 4 -3 forms with the release of three protons [H 3 O + ] = [OH - ]+[H 2 PO 4 - ]+2[HPO 4 -2 ]+3[PO 4 -3 ]
26
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 용액의 분류 (1) 강산과 강염기의 용액 (Solutions of strong acids and bases) (2) 짝산 - 염기쌍 (Conjugated acid-base pairs) (a) 약산만을 함유한 용액 (Soln. containing only a weak acid) (b) 약염기만을 함유한 용액 (Soln. containing only a weak base) (c) 단일 짝산 - 염기쌍을 함유한 용액 (Soln. containing a single conjugated acid-base pair) (3) 두개의 짝산 - 염기쌍 (Two conjugate acid-base pairs) (a) 2 양성자산만을 함유한 용액 (Soln. containing only a diprotic acid) (b) 양쪽전해질만을 함유한 용액 (Soln. containing only an ampholyte) (c) 2 산성염기만을 함유한 용액 (Soln. containing only a diacidic base) (4) 두개의 독립적인 산 - 염기쌍 (Two independent acid-base pairs) (a) 2 약산만을 함유한 용액 (Soln. containing two weak acids) (b) 약산과 약염기의 염을 함유한 용액 (Soln. containing a salt of a weak acid and a weak base) (c) 약산과 약염기를 함유한 용액 (Soln. containing a weak acid and a weak base)
27
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions of Strong Acids and Bases Strong Acids and Bases 10 -2 ( HCl ) PBE : [H 3 O + ] = [ OH - ] + [Cl - ] = + C a (7-84) [H 3 O + ] 2 - C a [H 3 O + ] - K w = 0 (7-85) [H 3 O + ] = Or [OH - ] = Concentration of Acid 10 -6 M : [H 3 O + ] C a Concentration of Base 10 -6 M : [OH - ] C b [H 3 O + ] K w C b + C b 2 + 4K w 2 C a + C a 2 + 4K w 2
28
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Conjugate Acid - Base Pairs HB + H 2 O H 3 O + + B - B - + H 2 O OH - + HB H 2 O + H 2 O H 3 O + + OH - PBE : [H 3 O + ] + [ HB ] = [ OH - ] + [ B - ] [ HB ] = ( [H 3 O + ] C b ) / ( [H 3 O + ] + K a ) [ B - ] = (K a C a ) / ( [H 3 O + ] + K a ) Result :[H 3 O + ] = K a (C a - [H 3 O + ] + [ OH - ] ) / ( C b + [H 3 O + ] - [ OH - ] ) (7-99)
29
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing Only a Weak Acid C b =0, [H 3 O + ] [ OH - ] [H 3 O + ] 2 + K a [H 3 O + ] - K a C a = 0 [H 3 O + ] = ( - K a + K a 2 + 4K a C a ) / 2 C a [H 3 O + ] [H 3 O + ] = K a C a (7-102)
30
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing Only a Weak Base C a = 0, [ OH - ] [H 3 O + ] [H 3 O + ] = K a [ OH - ] / ( C b - [ OH - ] ) = K a K w / [H 3 O + ] C b - K w C b [H 3 O + ] 2 - K w [H 3 O + ] - K a K w = 0 [H 3 O + ] = ( K w + K w 2 + 4C b K a K w ) / 2C b K a [H 3 O + ] [H 3 O + ] = K a K w / C b C b [ OH - ] [ OH - ] = K b C b
31
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing a Single Conjugate Acid - Base pair C a, C b [H 3 O + ] or [ OH - ] [H 3 O + ] = K a C a / C b Example: acetic acid and sodium acetate
32
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Two Conjugate Acid - Base pair ( Polyprotic) PBE : [H 3 O + ] + [H 2 A] ab + [ HA - ] b + 2[ H 2 A] b = [OH-] + [ HA - ] a + 2[ A -2 ] b + [ A -2 ] ab [H 3 O + ] 4 + [H 3 O + ] 3 ( K 1 + 2C b + C ab ) + [H 3 O + ] 2 [K 1 (C b - C a ) + K 1 K 2 -K w ] - [H 3 O + ] [K 1 K 2 (2C a + C ab ) + K 1 K w ] - K 1 K 2 K w = 0
33
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing Only a Diprotic Acid C ab and C b = 0 C a K 2 : [H 3 O + ] 3 + [H 3 O + ] 2 K 1 - [H 3 O + ] K 1 C a -2 K 1 K 2 C a = 0 [H 3 O + ] 2 K 2,2 K 1 K 2 C a is drop : [H 3 O + ] 2 + [H 3 O + ] K 1 - K 1 C a = 0 C a K 2 & [ H 3 O + ] 2 K 2, K 2 <<K 1 : [H 3 O + ] = - K a + K a 2 + 4K a C a 2
34
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing Only an Ampholyte. C a, C b = 0 [H 3 O + ] = ( K 1 K 2 C ab + K 1 K w ) / ( K 1 + C ab ) K 2 C ab K w, [H 3 O + ] = ( K 1 K 2 C ab ) / ( K 1 + C ab ) C ab K 1, [H 3 O + ] = K 1 K 2
35
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing Only a Diacidic Base. C a, C ab = 0, C b >>K b2 & [ OH - ] >> 2K b2 K w is drop [ OH - ] 2 + [ OH - ]K b1 - K b1 C b = 0 C b [ OH - ], [ OH - ] = K b1 C b
36
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Two independent Acid - Base pair HB 1 + H 2 O H 3 O + + B 1 - K 1 = [H 3 O + ][B 1 - ] / [HB 1 ] HB 2 + H 2 O H 3 O + + B 2 - K 2 = [H 3 O + ][B 2 - ] / [HB 2 ] PBE : [H 3 O + ] + [HB 1 ] B1 + [HB 2 ] B2 = [ OH - ] + [B 1 - ] A1 + [B 2 - ] A2
37
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing Two Weak Acids. C b1, C b2 = 0 [H 3 O + ] 2 + [H 3 O + ] (K 1 + K 2 ) - ( K 1 C a1 +K 2 C a2 ) = 0 C a1, C a2 [H 3 O + ], [H 3 O + ] = K 1 C a1 + K 2 C a2.
38
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Solutions Containing a Salt of a Weak Acid and a Weak Base. In case ammonium acetate, C a1, C b2 = 0 and K w = negligibly small NH 4 + + Ac - HAc + NH 3 acid 1 Base 2 Acid 2 Base 1 C a1 =C b2 =C s,( C s : salt concentration.) C s >> K 1 or K 2 [H 3 O + ] 2 C s - [H 3 O + ] K 1 K 2 - K 1 K 2 C s = 0 ( C s >> [H 3 O + ] ) * [H 3 O + ] = K 1 K 2 H n A [H 3 O + ] 2 - [H 3 O + ] K 1 (n - 1) - n K 1 K 2 = 0 [H 3 O + ] = n K 1 K 2
39
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 Effect of Ionic Strength upon Acidity Constants. HB + H 2 O H 3 O + + B K = = pK` = pK + (Debye-Hückel equation) Z: charge : ionic strength a H3O+ a B a HB [H 3 O + ] [B] [HB] H3O+ B HB 0.51(2Z - 1) 1 +
40
SKKU Physical Pharmacy Laboratory 성균관대학교 물리약학연구실 약품 및 생체 내에서의 완충제 ‘ 제약용 완충용액의 제조 ’ 반드시 포함 삼투성과 pH 를 조절하는 방법 다음 주제를 최대한 자세히 조사 / 정리하여 제출하시오. (Due date: 2015. 10. 2 )
Similar presentations