Presentation is loading. Please wait.

Presentation is loading. Please wait.

수성 금성 지구 화성 오행 (수성, 금성, 화성, 목성, 토성) : 육안 관측 가능 –떠돌이 별

Similar presentations


Presentation on theme: "수성 금성 지구 화성 오행 (수성, 금성, 화성, 목성, 토성) : 육안 관측 가능 –떠돌이 별"— Presentation transcript:

1 수성 금성 지구 화성 오행 (수성, 금성, 화성, 목성, 토성) : 육안 관측 가능 –떠돌이 별
태양계_지구형행성 수성 금성 지구 화성 오행 (수성, 금성, 화성, 목성, 토성) : 육안 관측 가능 –떠돌이 별

2 태양계 여행

3

4 태양계 가족 - 태양 (보통 항성) 8행성 수,금,지,화; 목,토,천,해 행성의 위성들, 목성형 행성들의 고리
소행성(화성과 목성사이) 왜소행성 : 명왕성 … 혜성, 운석, 유성, 행성간 먼지,… Oort cloud(50000AU), Kuiper belt object(50AU?)

5 태양계 구성 물질 태양 : % 행성들 : 0.135% (목성 > 2배 * 나머지 행성) 혜성들 : 0.01 % ? 위성들 : % 소행성들 : % ? 유성들 : % ? 행성간 물질 : % ? (행성간 가스, 먼지)

6 지구형 행성 – 수성, 금성, 지구, 화성 화성 지구 금성 목성

7 목성형 행성-목성,토성, 천왕성 토성 목성 천왕성 해왕성

8

9

10

11 행성들 – 거의 황도면에서 공전 황도 북극에 대해 반시계 방향으로 공전 자전면과 공전면의 기울기  계절 수성 : 0.1도, 금성 : 177도 (역자전) 화성 : 25도 목성 : 3도 토성 :27도 천왕성 : 98도 해왕성 : 30도

12 지구행 행성  주로 돌과 금속으로 된 물질  고 밀도  느린 자전  고체 표면  고리 없고, 위성 수 극소 목성형 행성  주로 수소와 혜륨의 물질  저 밀도  빠른 자전  깊은 대기  고리와 많은 위성

13 지구

14 에라토스테네스(기원 전 276-195 : 그리스 천문학자) 의 지구 크기측정
알렉산드리아 와 시에네 = 5000 스타디아 360/7 * 5000 = 250,000 스타디아 42,000 km (1스타디아=1/6 km) 실제 =40,030 km

15 행성으로 본 지구 대기와 활발한 지각 활동  적은 수의 충돌 구덩이 무거운 원소(철 규소 산소등)로 구성 : 5.52 g/cm3 표면에 액체 상태의 물 내부 ;1. 지각 : 화산 활동, 침식, 대륙이동 해양지각 : 6Km 현무암 대륙지각 : Km 화강암 판에 의한 열곡대, 섭입대, 단층대, 화산활동 2. 맨틀 : 고체 지구의 대부분 2900Km 유동성, 상부 화산 분출 3. 금속핵 : 액체상태의 외핵 (3500km) 고체 내핵 (1200 Km)

16 지구 자기장 4* 10-5 T: 내부 금속의 움직임 대기 상층의 자기권  반 알렌대 (1958 익스플로러 1호) ; 1-2 R, 4-5R  오로라 현상 지구의 대기 : 지표 1 bar (1Kg/ cm2) 10 Km : 대류권 (Trophosphere) 80 Km : 성층권 (stratosphrere) 상부 오존층 == 자외선 차단 (CFC-오존파괴) 100 km : 중간권 (mesosphere) 전리권 (ionosphere) 대기 성분 : 78% N2, 21% O2, 1% Ar, 미량 H2O

17 지구 자기장 : 자전축에 12 도 기울어짐

18 지구 자기권

19

20 오로라

21 오로라와 오리온 별자리

22 지구 대기

23 지구 생명체 38억년전 암석에 흔적 초기 지구대기 = 풍부한 CO2 – 생명체 구성 화학 물질 (아미노산) 형성  식물의 발생 : 광합성 = CO2 흡수, O2 방출 (초기 지각 암석과 화학반응 , 20억년 전부터 대기에 싸임  오존층) 대륙에서 생명체 서식 기틀  동물의 번성 온실 효과와 온난화 : CO2 : 금세기 25% 증가, 매해 0.5% 산업화 (화학연료)와 열대지방의 산림 훼손 천체에 의한 영향 우크라이나 : 2013년 2월 : 17m 소행성 시베리아 퉁그스카 강 근처 : 1908년 6월 30일 5만년전 충돌 : 아리조나 (50m 금속 덩어리 ) 6500 만년전 : 백악기 공룡 + 50% 종의 멸망 (멕시코 유카탄 반도 퇴적층에 흔적)

24 Meteor Crater (50 m) – Arizona

25 수성 관측 역사 Significant Dates : Pierre Gassendi uses a telescope to watch from Earth as Mercury crosses the face of the sun. 1965: Though it was thought for centuries that the same side of Mercury always faces the sun, astronomers find the planet rotates three times for every two orbits. : Mariner 10 photographs roughly half of Mercury's surface in three flybys. 1991: Scientists using Earth-based radar find signs of ice locked in permanently shadowed areas of craters in Mercury's polar regions. 2008: MESSENGER's first flyby of Mercury initiates the most comprehensive study yet of the innermost planet. The three flybys revealed the side of the planet not seen by Mariner 10. Also, many more images and discoveries were obtained by these flybys.

26 지구에서 찍은 수성 사진

27 수성 : 발 빠른 사신 일반적 성질 주로 금속으로 형성:밀도가 5.4 g cm-3 (1/18 지구질량, ½ 지구반경) 빠른 공전속도. (0.39 AU e=0.206, p=88일) 발빠른 사신 (수성의 하루=176일) 표면온도 : 700 K 근일점 직하점, K : 태양 반대쪽 낮은 반사율 : 달 표면 보다 검은 바위물질 약한 자기장 :3* 10-7 T (지구 자기장의 1%, 중심금속핵 –일부 액체)  자기권 형성 :오로라 낮은 중력  옅은 대기 계속적인 운석 충돌 – 달과 유사 볼칸 아인슈타인의 상대성 이론 입증 : 43”/세기 근일점이동 얼음의 존재 수성의 북극지방에 높은 레이다의 반사율  어름 . 극지방 운석구의 그림자로 가려 얼음이 존재 ..

28 Mariner

29 수성

30

31 MESSENGER flyby image 북 쪽에서 퍼진 방사 이메지 중앙 : 카이퍼 크레이터 크레이터 ; 카이퍼 남동쪽

32 달과 유사하나 다른 점 1. 수성 표면에 수 백 km 의 scarps
2. 가장 심한 충돌된 지역에도 충돌구로 완전히 채워진 것이 아니라 충돌구간의 평원으로 되어 있음 3. 10 km 이상 크기의 충돌구가 달의 3배  다른 크기 영역의 충돌체와 다른 충돌 속도 를 암시 수성 표면  초기 태양계에 과격한 충돌 시기를 암시

33 금성 금성 상층대기 마젤란 레이다 자료

34

35 금성 트랜짓 ; It is thought that Venus was completely resurfaced by volcanic activity to 500 million years ago. More than 1,000 volcanoes or volcanic centers larger than 20 km (12 miles) in diameter dot the surface. Volcanic flows have produced long, sinuous channels extending for hundreds of kilometers. Venus has two large highland areas: Ishtar Terra, about the size of Australia, in the north polar region; and Aphrodite Terra, about the size of South America, straddling the equator and extending for almost 10,000 km (6,000 miles). Maxwell Montes, the highest mountain on Venus and comparable to Mount Everest on Earth, is at the eastern edge of Ishtar Terra.

36 금성 관측 역사 Significant Dates AD: Mayan astronomers make detailed observations of Venus, leading to a highly accurate calendar. : Two European expeditions to watch Venus cross in front of the sun lead to the first good estimate of the sun's distance from Earth. 1962: NASA's Mariner 2 reaches Venus and reveals the planet's extreme surface temperatures. It is the first spacecraft to send back information from another planet. 1970: The Soviet Union's Venera 7 sends back 23 minutes of data from the surface of Venus. It is the first spacecraft to successfully land on another planet. : NASA's Magellan spacecraft, in orbit around Venus, uses radar to map 98 percent of the planet's surface. 2005: The European Space Agency launches Venus Express to study the atmosphere and plasma environment of Venus from orbit

37 Magellan

38 금성 – 화산 –seeing through clouds

39 금성 – 펜케익 모양 화산 ; 직경 25 Km, 높이 2 km

40 금성 – volcanic plains

41 Canali

42 Clusters of impact craters

43 Flows around craters

44 Impact deposits

45 레이다 이메지- Magellan

46 베너라 우주선이 찍은 금성 표면- 오랜지색(대기가 푸른색 흡수) 밑 그림 ; 지구 대기를 가정할 경우의 색갈

47 화성 Mars is a cold desert world. It is half the diameter of Earth and has the same amount of dry land. Like Earth, Mars has seasons, polar ice caps, volcanoes, canyons and weather, but its atmosphere is too thin for liquid water to exist for long on the surface. There are signs of ancient floods on Mars, but evidence for water now exists mainly in icy soil and thin clouds. By Viking

48 화성 표면 A Martian panorama taken by the Mars Exploration Rover Opportunity Close-up image of a dust storm on Mars

49 화성 관측-1 Significant Dates
1877: Asaph Hall discovers the two moons of Mars, Phobos and Deimos. 1965: NASA's Mariner 4 sends back 22 photos of Mars, the world's first close-up photos of a planet beyond Earth. 1976: Viking 1 and 2 land on the surface of Mars. 1997: Mars Pathfinder lands and dispatches Sojourner, the first wheeled rover to explore the surface of another planet. 2002: Mars Odyssey begins its mission to make global observations and find buried water ice on Mars.

50 화성 관측-2 2004: Twin Mars Exploration Rovers named Spirit and Opportunity land on Mars and find the strongest evidence yet obtained that the Red Planet once had underground liquid water and water flowing on the surface. 2006: Mars Reconnaissance Orbiter begins returning high-resolution images as it studies the history of water on Mars. 2008: Phoenix lands on Mars to study the history of water and search for complex organic molecules; confirms the presence of water ice near the north pole. 2012 Mars Science Laboratory's Curiosity rover lands on Mars to study whether the Red Planet ever was -- or is still today -- an environment suitable for life.

51

52 P. Lowell

53 Canals -1901

54 Mars 4 faces on same night

55

56 Seasonal Mars

57 Mars Global Surveyor (1997-2001)
Mariner ( ) Viking ( ) Mars Pathfinder ( ) Mars Global Surveyor ( ) 2001 Mars Odyssey (2001- ) All Attempted Missions to Mars Future Mars Exploration Mariner ( ) Viking ( ) Mars Pathfinder ( ) Mars Global Surveyor ( ) 2001 Mars Odyssey (2001- ) All Attempted Missions to Mars Future Mars Exploration Mariner                                                 104K GIF Spacecraft exploration of Mars began in 1964 with Mariner 4. Previous attempts by both the USSR and United States to send a spacecraft to Mars had failed. Mariner 4 reached the red planet on July 15, 1964 and returned photographs and atmospheric measurements. Three more Mariner spacecraft, Mariner 6,7 and 9, successfully orbited Mars by the end of 1971. Mariner Mission Information and Images Mariner                                                 104K GIF Spacecraft exploration of Mars began in 1964 with Mariner 4. Previous attempts by both the USSR and United States to send a spacecraft to Mars had failed. Mariner 4 reached the red planet on July 15, 1964 and returned photographs and atmospheric measurements. Three more Mariner spacecraft, Mariner 6,7 and 9, successfully orbited Mars by the end of 1971. Mariner Mission Information and Images Mariner 4 spacecraft Mariner 4 spacecraft Viking                                                 The Viking Mission consisted of two orbiting spacecraft, each carrying a lander that was deployed to the surface of Mars. Viking was the first mission to successfully land and operate from the surface of Mars. See The Viking Mission for details of the mission experiments and image data. Viking                                                 The Viking Mission consisted of two orbiting spacecraft, each carrying a lander that was deployed to the surface of Mars. Viking was the first mission to successfully land and operate from the surface of Mars. See The Viking Mission for details of the mission experiments and image data. Viking Orbiter Viking Orbiter Mars Pathfinder rover Sojourner and rock "Yogi". Image from NASA/Jet Propulsion Laboratory Mars Pathfinder rover Sojourner and rock "Yogi". Image from NASA/Jet Propulsion Laboratory Viking lander - view of surface 2001 Mars Odyssey                                       59K JPEG The 2001 Mars Odyssey is an orbiter spacecraft that was launched to Mars April 7, 2001 and arrived in October, The Orbiter carries 3 science instruments: The Thermal Emission Imaging System (THEMIS) designed to map mineralogy and morphology or the Martian surface, The Gamma Ray Spectrometer (GRS) used for global mapping of the elemental composition of the surface to determine the abundance of hydrogen in the shallow subsurface, and the Mars Radiation Environment Experiment (MARIE) which examines the near-space radiation environment to assess radiation-related risks to human explorers. More information: 2001 Mars Odyssey Home Page - 2001 Mars Odyssey                                       59K JPEG The 2001 Mars Odyssey is an orbiter spacecraft that was launched to Mars April 7, 2001 and arrived in October, The Orbiter carries 3 science instruments: The Thermal Emission Imaging System (THEMIS) designed to map mineralogy and morphology or the Martian surface, The Gamma Ray Spectrometer (GRS) used for global mapping of the elemental composition of the surface to determine the abundance of hydrogen in the shallow subsurface, and the Mars Radiation Environment Experiment (MARIE) which examines the near-space radiation environment to assess radiation-related risks to human explorers. More information: 2001 Mars Odyssey Home Page - THEMIS Image of Hrad Valles Image from ASU THEMIS Science Team THEMIS Image of Hrad Valles Image from ASU THEMIS Science Team                                               Mars Express The European Space Agency with cooperation from NASA and the Italian Space Agency are launching the Mars Express spacecraft in 2003 to explore the atmosphere and surface of Mars from polar orbit. The mission objective is to search for sub-surface water from orbit and to send a small lander to the surface. The spacecraft will carry seven scientific instruments, including some similar to the European instruments lost on the ill-fated Russian Mars '96 mission. 2003 Mars Exploration Rovers In 2003, two large rovers will be launched to Mars to explore the Martian surface in much the same way that the Mars Pathfinder Sojourner rover did in 1997, however, these rovers will have greater maneuverability and range, traveling up to 100 meters (about 110 yards) across the surface in a Martian day. Each rover will carry instruments designed to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. See Mars Resources for links to more information on past and future missions to Mars.                                               Mars Express The European Space Agency with cooperation from NASA and the Italian Space Agency are launching the Mars Express spacecraft in 2003 to explore the atmosphere and surface of Mars from polar orbit. The mission objective is to search for sub-surface water from orbit and to send a small lander to the surface. The spacecraft will carry seven scientific instruments, including some similar to the European instruments lost on the ill-fated Russian Mars '96 mission. 2003 Mars Exploration Rovers In 2003, two large rovers will be launched to Mars to explore the Martian surface in much the same way that the Mars Pathfinder Sojourner rover did in 1997, however, these rovers will have greater maneuverability and range, traveling up to 100 meters (about 110 yards) across the surface in a Martian day. Each rover will carry instruments designed to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. See Mars Resources for links to more information on past and future missions to Mars. Exploring The Planets Exploring The Planets Mars and its Moons || Observation || Exploration || Viking Mission || Surface Global View || Meteorite || Imagery || Links Mars Mars and its Moons || Observation || Exploration || Viking Mission || Surface Global View || Meteorite || Imagery || Links Mars

58 Olympus mons, Mars

59 Mt. St. Helens, Earth

60

61

62 화성남극 양극관-드라이아이스(CO2) 와 확실치 않은 양의 어름(H2O)으로 되어 있음

63

64 1976 Viking 2001 Mars Global Surveyor

65

66 지구 에 사막 화성 모래 storm Close-up image of a dust storm on Mars

67 오딧세이

68

69

70

71 May, 25 , 2008 – arctic region called Vastitas Borealis at 68 deg
May, 25 , 2008 – arctic region called Vastitas Borealis at 68 deg. North lat, 234 deg, east longitude

72 지구형 행성 중 생명체 존재가 가능한 것은? 이유는?
지구형 행성 중 생명체 존재가 가능한 것은? 이유는? 어떤 행성 : 이유 :

73 1. 다른 지구형 행성들의 특성을 비교해 볼 때 지구에서 인류가 출연하게 된 가장 큰 이유는 무엇이라고 생각하는가?
강의 : 태양계-행성 1. 다른 지구형 행성들의 특성을 비교해 볼 때 지구에서 인류가 출연하게 된 가장 큰 이유는 무엇이라고 생각하는가? 이름 학번 학과 강의 내용 요약 가장 재미있는 내용 이해 안 되는 내용


Download ppt "수성 금성 지구 화성 오행 (수성, 금성, 화성, 목성, 토성) : 육안 관측 가능 –떠돌이 별"

Similar presentations


Ads by Google