Download presentation
Presentation is loading. Please wait.
1
Chemical Reactor Design
Youn-Woo Lee School of Chemical and Biological Engineering Seoul National University , 1 Gwanangro, Gwanak-gu, Seoul, Korea
2
Seoul National University
第4章 Stoichiometry(화학양론) Reaction Engineering I 反應工學I Seoul National University
3
Seoul National University
개요. 제3장에서 반응 속도 -rA가 농도와 온도에 어떻게 관련되는지를 설명하였다(1단계). 이 장에서는 농도가 어떻게 전화율과 관련되는지를 보여줄 것이다(2단계), 이렇게 1단계와 2단계를 결합하여 –rA = f(X)의 식을 얻게 되면 여러 반응기를 설계할 수 있을 것이다. 농도를 전화율의 함수로 표현하기 위하여 농도의 정의와 함께 화학양론표(stoichiometric table)를 이용할 것이다. 여러분이 이 장을 마친 뒤에는 반응 속도를 전화율의 함수로써 표현할 능력이 생기며, 회분식 및 흐름식 반응기에 대해 평형 전화율을 계산할 수 있을 것이다. Seoul National University
4
Seoul National University
Reactor Size Design Equations Levenspiel plot Batch CSTR Graphical method PFR For vs. X, the volume of a CSTR and the volume of a PFR can be represented as the shaded areas in the Levenspiel plots. PBR If we know the molar flow rate to the reactor and the reaction rate as a function of conversion, then we can calculate the reactor volume necessary to achieve a specific conversion. PFR Seoul National University
5
Design Isothermal Reactor
CHAPTER 2 -rA=f(X) CA = f(X) NA = f(X) V= f(X) Stoichiometry CHAPTER 4 Rate Laws CHAPTER 3 Seoul National University
6
Stoichiometric Table aA + bB cC + dD
If the rate law depends on more than one species, we MUST relate the concentrations of different species to each other. A stoichiometric table presents the stoichiometric relationships between reacting molecules for a single reaction. aA + bB cC + dD (2-1) (3-1) In formulating our stoichiometric table, we shall take species A as our basis of calculation (i.e., limiting reactant) and then divide through by the stoichiometric coefficient of A (2-2) In order to put everything on a basis of “per mole of A.” Seoul National University
7
Seoul National University
4.1 Batch System t = 0 NA0 NB0 NC0 ND0 Ni0 t = t NA NB NC ND Ni Batch reactors are primarily used for the production of specialty chemicals and to obtain reaction rate data in order to determine reaction rate laws and rate law parameters such as k, the specific reaction rate. Seoul National University
8
Seoul National University
4.1 Batch System t = 0 NA0 NB0 NC0 ND0 Ni0 At time t=0, we will open the reactor and place a number of moles of species A, B, C, D, and I (NA0, NB0, NC0, ND0, and NI0, respectively) Species A is our basis of calculation. t = t NA NB NC ND Ni NA0 is the number of moles of A initially present in the reactor. NA0X moles of A are consumed as a result of the chemical reaction. NA0-NA0X moles of A leave in the system. The number of moles of A remaining in the reactor after conversion X NA = NA0 - NA0X = NA0 (1-X) Seoul National University
9
Determination of the number of moles of B
To determine the number of moles of species B remaining at time t (after NA0X moles of A have reacted). For every mole of A that reacts, b/a moles of B must reacted; The number of moles of B remaining in the system, NB moles of A reacted moles of B initially moles of B disappeared Seoul National University
10
Stoichiometric table To determine the number of moles of each species remaining after NA0X moles of A have reacted, we form the stoichiometric table (Table 4-1). This stoichiometric table presents the following information. Column 1: the particular species Column 2: the number of moles of each species initially present Column 3: the change the number of moles brought about by reaction Column 4: the number of moles remaining in the system at time t. Seoul National University
11
Table 4-1 Stoichiometric Table for a Batch System
Seoul National University
12
The total number of moles per mole of A reacted
The total number of moles in the system, NT (4-1) Change in the total number of moles mole of A reacted Seoul National University
13
Design Isothermal Reactor
CHAPTER 2 -rA=f(X) CA = f(X) NA = f(X) V= f(X) Stoichiometry CHAPTER 4 Rate Laws CHAPTER 3 Seoul National University
14
4.1.1. Concentration of each species
CA = f(X) NA = f(X) V= f(X) Stoichiometry CHAPTER 4 Seoul National University
15
4.1.1. Concentration of each species
(4-2) (4-3) (4-4) (4-5) Seoul National University
16
4.1.1 Volume as a function of conversion
We need V(X) to obtain CB=f(X) For liquids, volume change with reaction is negligible when no phase changes are taking place. (V=V0) For gas-phase reactions, the volumetric flow rate most often changes during the course of the reaction due to a change in the total number of moles or in temp. or pressure. Seoul National University
17
4.1.1 Constant-Volume Batch Reaction Systems
Constant volume system (=constant density system): The lab bomb calorimeter reactor: the volume within the vessel is fixed and will not change. V=V0 A constant-volume gas-phase isothermal reaction occurs when the number of moles of products equals the number of moles of reactants. (Ex: water-gas shift reaction, CO+H2O CO2+H2) For liquid-phase reactions taking place in solution, the solvent usually dominates the situation. As a result, changes in the density of the solute do not affect the overall density of the solution significantly and therefore it is essentially a constant-volume reaction process: Most liquid-phase organic reactions, except polymerization. Seoul National University
18
Constant Volume Batch Reactor
(4-6) (4-7) (4-8) (4-9) Seoul National University
19
Constant Volume System
For Liquid phase reactions (or isothermal and isobaric gas-phase reactions with no change in the total number of moles) -rA = f(C) Eq. (3-26) -rA = f(X) Levenspiel plot Seoul National University
20
Example 4-1: Liquid-Phase Reaction
Soap consists of the sodium and potassium salts of various fatty acids as oleic(C18=), stearic(C18), palmitic(C16), lauric(C12), and myristic(C14) acids. The saponification for the formation of soap from aqueous caustic soda and glyceryl stearate is as follow. 3NaOH + (C17H35COO)3C3H5 3C17H35COONa + C3H5(OH)3 Letting X represent the conversion of sodium hydroxide (the mole of sodium hydroxide reacted per mole of sodium hydroxide initially present), set up a stoichiometric table expressing the concentration of each species in terms of its initial concentration and the conversion of X. Stearic acid Seoul National University
21
Example 4-1: Liquid-Phase Reaction
(C17H35COO)3C3H5 Glyceryl stearate C17H35COONa Na C3H5(OH)3 Glycerine=Glycerol Seoul National University
22
Example 4-1: Liquid-Phase Reaction
Seoul National University
23
Example 4-1 Stoichiometric Table
3NaOH + (C17H35COO)3C3H5 3C17H35COONa + C3H5(OH)3 Seoul National University
24
Example 4-2: What is the limiting reactant?
3NaOH + (C17H35COO)3C3H5 3C17H35COONa + C3H5(OH)3 Having set up stoichiometric table in Example 4-1, one can now readily use it to calculate the concentrations at a given conversion. If the initial mixture consists solely of sodium hydroxide at a concentration of 10 mol/L and of glyceryl stearate at a concentration of 2 mol/L, what is the concentration of glycerine when the conversion of sodium hydroxide is (a) 20% and (b) 90%? Solution Only the reactants NaOH and (C17H35COO)3C3H5 are initially present; therefore, C=D=0.
25
Example 4-2: What is the limiting reactant?
3NaOH + (C17H35COO)3C3H5 3C17H35COONa + C3H5(OH)3 (a) For 20% conversion of NaOH: (b) For 90% conversion of NaOH: Ooops! Negative concentration impossible! What went wrong? glyceryl stearate is limiting reactant. All the glyceryl stearate is used up before 90% of the NaOH could be reacted.
26
Example 4-2: What is the limiting reactant?
3NaOH + (C17H35COO)3C3H5 3C17H35COONa + C3H5(OH)3 10 mol/L 2 mol/L glyceryl stearate is limiting reactant It is important to choose the limiting reactant as the basis of calculation. 분석: 계산의 기준을 잘못 선택하였다! 스테아르산글리세릴이 한정반응물이고 90%의 NaOH가 반응하기 전에 다 소비되므로, NaOH의 전화율이 90%가 되는 것은 불가능하다. 스테아르산글리세린이 계산의 기준이 되었어야만 하며 따라서 주어진 반응을 화학양론계수 3으로 나누지 말았어야 했다.
27
Seoul National University
4.2 Flow Systems Entering Leaving FA0 FB0 FC0 FD0 FI0 FA FB FC FD FI Molar flow rate Definition of concentration for flow system (4-10) volumetric flow rate Seoul National University
28
4.2.1 Equations for Concentrations in Flow Systems
Batch System Flow System Seoul National University
29
Table 4-2 Stoichiometric Table for a Flow System
Seoul National University
30
4.2.2 Liquid-Phase Concentrations
Entering Leaving FA0 FB0 FC0 FD0 FI0 FA FB FC FD FI CA = f(X) FA = f(X) v=f(X) (4-12) (4-13) Seoul National University
31
4.2.3 Change in the Total Number of Moles
with Reaction in the Gas Phase (1) Gas-phase reactions that do not have an equal number of product and reactant moles. In flow systems where this type of reaction occurs, the molar flow rate will be changing as the reaction progress. The volumetric flow rate will also change due to molar flow change. N2 + 3H NH3 (2) The combustion chamber of the internal-combustion engine (3) The expanding gases within the breech and barrel of a firearm as it is fired. breech : 포미 (砲尾) barrel : 총신(銃身) Seoul National University
32
Batch Reactor with Variable Volume
Individual concentrations can be determined by expressing the volume V for batch system (or volumetric flow rate v for a flow system) as a function of conversion using the following equation of state. (4-A) T = temperature, K P = total pressure, atm (kPa; 1 atm=101.3 kPa) Z = compressibility factor R = gas constant = dm3·atm/gmol · K This equation is valid at any point in the system at any time. At time t=0, (4-B) Dividing (4-A) by (4-B) and rearranging yields We need this! (4-C) Seoul National University
33
Stoichiometric Table for a Batch System
Seoul National University
34
Volume as a function of conversion variable-volume batch reactor
The total number of moles in the system, NT We divide through by NT0 where yA0 is mole fraction of A initially present. If all the species in the generalized reaction are in the gas phase, then 총몰수 변화 반응한 A의 몰수 =
35
Volume as a function of conversion variable-volume batch reactor
Eq (3-34) is further simplified by letting 완전전환에서의 총몰수 변화 반응기에 공급된 총몰수 @ X=1, NT=NTf
36
Volume as a function of conversion variable-volume batch reactor
The total number of moles in the system, NT (4-D) We divide through by NT0 (4-E) where yA0 is mole fraction of A initially present. If all the species in the generalized reaction are in the gas phase, then (4-F) Eq (4-C) now becomes (4-G) Seoul National University
37
Volume as a function of conversion variable-volume batch reactor
In gas-phase systems that we shall be studying, the temperature and pressure are such that the compressibility factor will not change significantly during the course of the reaction; hence Z0~Z. For a batch system the volume of the gas at any time t is (4-H) Eq (4-H) applies only to a variable-volume batch reactor. If the reactor is a rigid steel container of constant volume, then of course V=V0. For a constant-volume container, V=V0, and Eq. (4-H) can be used to calculate the pressure inside the reactor as a function of temperature and conversion. Seoul National University
38
Volume as a function of conversion variable-volume flow system
To derive the concentration of the species in terms of conversion for a variable-volume flow system, we shall use the relationships for the total concentration. The total concentration at any point in the reactor is (4-14) At the entrance to the reactor (4-15) Taking Eq (3-40)/Eq(3-39) and assuming Z~Z0, (4-16) Seoul National University
39
Concentration as a function of conversion variable-volume flow system
We can express the concentration equation of species j for a flow system in terms of conversion: (4-17) The total molar flow rate is just the sum of the molar flow rates of each of the species in the system and is (4-18) Seoul National University
40
Concentration as a function of conversion variable-volume flow system
One of the major objective of this chapter is to learn how to express any given rate law –rA as a function of conversion. The schematic diagram in Figure 4-3 helps to summarize our discussion on this point. The concentration of B expressed as a function of conversion in both flow and batch systems, for various conditions of temperature, pressure, and volume. Seoul National University
41
Expressing concentration as a function of conversion
Liquid Phase Gas Phase Flow Batch Batch Flow No Phase Change Constant Volume No Phase Change or No Semipermeable Membranes isothermal Isothermal + No DP No DP Fig 4-3 Seoul National University
42
Volume as a function of conversion variable-volume flow system
From Table 3-3, the total molar flow rate can be written in terms of X (4-19) (4-23) Seoul National University
43
Volume as a function of conversion variable-volume flow system
The concentration of species j is Seoul National University
44
Concentration as a function of conversion
Multiple gas-phase reaction and membrane reactor Substituting for Fj and FT in terms of conversion in Eq. (4-19) yields Dividing numerator and denominator by FT0, we have Seoul National University
45
Concentration as a function of conversion
Multiple gas-phase reaction and membrane reactor Recalling ya0=FA0/FT0 and CA0=yA0CT0, then (4-25) where vi is the stoichiometric coefficient, which is negative for reactants and positive for products. For example, for the reaction vA = -1, vB = -b/a, vC = c/a, vD = d/a, and j=Fj0/FA0. Seoul National University
46
Concentration as a function of conversion
variable-volume gas flow system Table 4-3 Seoul National University
47
Manipulation of the Equation Cj=fj(X)
Show under what conditions and manipulation the expression for CB for a gas flow system reduces to the following equation in Table 3-5. pp114 Seoul National University
48
Manipulation of the Equation Cj=hj(X)
Seoul National University
49
Example 4-3: Determination of Cj=hj(X) for a Gas-Phase Reaction
Isothermal Seoul National University
50
Example 4-3: Determination of Cj=hj(X) for a Gas-Phase Reaction
B C Seoul National University
51
Seoul National University
몰유량 항으로 화학양론표 4-3.1 FC0=0 Seoul National University
52
Seoul National University
(4-23) (4-23) (E4-3.2) Seoul National University
53
Seoul National University
= Seoul National University
54
Seoul National University
SO2 (E4-3.6) O2 (E4-3.7) SO3 (E4-3.8) N2 (E4-3.9) Seoul National University
55
Seoul National University
56
Concentrations as a function of conversion
CA = f(X) FA = f(X) v=f(X) Limiting reactant Seoul National University
57
Seoul National University
불활성 성분이지만 그 농도가 변하고 있는 것에 유의하여라!! Figure E4-3.1 N2 SO2 SO3 O2 Ci = f(X) Seoul National University
58
Reaction rates as a function of conversion
Seoul National University
59
Seoul National University
Levenspiel Plot Seoul National University
60
Example 4-3: Determination of Cj=hj(X) for a Gas-Phase Reaction
분석: 이 예제에서는 우선 몰유량 항으로 화학양론 표를 만들었다. 그러고 나서 전체 몰수의 변화가 있는 기상 반응에서 각 성분의 농도를 어떻게 표현하는지를 보였다. 다음으로 각 성분농도를 전화율의 함수로 도시하였고, 전체 몰유량 FT가 전화율에 따라 감소하기 때문에 전화율이 증가함에 따라 불활성 성분인 N2의 농도가 일정하지 않고 증가함을 확인하였다.
61
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion [예제 4-4] SO2 산화반응의 속도식을 분압과 전화율에 대하여 표현하기 예제 4-3에서 논의된 SO2 산화반응은 고체 백금 촉매 상에서 진행된다. 대부분의 기체-고체 촉매 반응들과 마찬가지로, 속도 법칙은 농도 대신 분압에 대하여 표현된다. 이 SO2 산화반응의 속도 법칙은 다음과 같이 실험적으로 구할 수 있다. , mol 산화된 SO2/(h)(g 촉매) (E4-4.1) 여기서 Pi (atm)은 성분 i의 분압이다. 반응은 400℃의 등온에서 행해진다. 이 온도에서 속도 상수 k, O2(KO2)와 SO2(KSO2)의 흡착 상수, 그리고 압력 평형 상수 KP는 다음과 같이 실험적으로 얻어진다. k = 9.7 mol SO2/atm3/2/h/g 촉매, KO2 = 38.5 atm-1, KSO2 = 42.5 atm-1, KP = 930 atm-1/2 전체 압력과 공급 조성(즉 28% SO2)은 예제 4-3과 같다. 결과적으로 들어가는 SO2의 분압은 4.1atm이다. 압력강하는 없다. 속도식을 전화율의 함수로 써라.
62
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion 풀 이 압력 강하가 없고 등온 운전조건임 SO2에 대해 우선 농도와 전화율 사이의 관계에 따르는 분압과 농도 사이의 관계에 대해 상기할 필요가 있다. 이미 어떻게 전화율의 함수로써 농도를 나타내는지 알고 있기 때문에 전화율의 함수로써 분압을 어떻게 표현하는지도 안다. (E4-4.2) 압력 강하가 없으므로 P = P0,y = 1 (E4-4.3)
63
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion SO3에 대해 (E4-4.4) O2에 대해 (E4-4.5) 예제 4-3으로부터 ΘB = 0.54 을 빼내면 식 (E4-4.5)은 다음과 같이 된다. (E4-.6)
64
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion 식 (E4-3.5)로부터 ε = (E4-3.5) 속도법칙 식 (E4-4.1)에 분압을 대입하면 (E4-4.7) 이 때, k = 9.7 mol SO2/atm3/2/h/g 촉매, PSO2,0=4.1atm, =8.3 atm3/2 (E4-4.8)
65
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion 이제 충전층 반응기(PBR)에서 특정 전화율에 도달하기 위한 촉매의 무게 W를 구하기 위해 레벤스필 도시(Levenspiel plot)를 사용할 수 있다. (2-17) 그림 E 전화율의 함수로서 SO2 산화반응 속도의 역수 하지만 다수의 소프트웨어 패키지를 이용하여 촉매의 무게 W를 구하는 훨씬 더 좋은 방법이 있음을 다음 장에서 보게 될 것이다. 예를 들어 식 (E4-4.6)과 식 (2-17)을 결합한 다음 촉매 무게 W의 함수로써 전화율 X를 찾기 위하여 폴리매스와 같은 상미분방정식(ODE) 풀이기를 사용할 수 있다. X Xe
66
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion 분석: 대부분의 균일 촉매 반응에서 속도법칙은 농도 대신 분압으로 표현된다. 그러나 우리는 이상기체방정식을 통하여 쉽게 분압을 농도의 함수로 표현할 수 있고, 전화율의 함수로써 속도법칙을 표현할 수 있다. 게다가, 대부분의 불균일 반응에서는, 제10장에서 설명한 것처럼, 속도법칙의 분모에서 (1 + KAPA + KBPB )와 같은 항을 발견하게 될 것이다. 이 장에서 지금까지 주로 비가역반응에 초점을 맞추었다. 가역반응에 대한 등온 반응기 설계에 사용되는 과정은 한 가지 주목할 만한 차이를 제외하고는 비가역반응의 경우와 같다. 어느 반응온도에서 달성될 수 있는 최대 전화율이 평형전화율 Xe이다. 다음 예제에서 지금까지 논의된 반응기 설계 알고리듬이 가역반응에 쉽게 확장되어 적용될 수 있다는 것을 알게 될 것이다.
67
in terms of Partial Pressure and Conversion
Example Expressing the Rate Law for SO2 Oxidation in terms of Partial Pressure and Conversion
68
Example 4-5 Calculating the Equilibrium Conversion
[예제 4-5] 평형전화율의 계산 다음 사산화이질소 (N2O4)의 이산화질소 (NO2)로 가역 기상 분해반응이 일정 온도에서 수행된다. N2O NO2 원료는 340 K, kPa (2 atm)의 순수한 N2O4로 구성되어 있다. 340 K에서 농도평형상수 KC는 0.1 mol/dm3이고 속도상수 는 0.5 min-1이다. (a) 정용회분식반응기에서 N2O4의 평형전화율을 구하여라. (b) 흐름반응기에서 N2O4의 평형전화율을 구하여라. (c) 단일반응이라 가정하고 흐름계와 회분식계의 속도식을 각각 전화율만의 함수로 나타내어라. (d) 평형전화율의 80%를 달성하는데 필요한 CSTR의 부피를 구하여라.
69
Example 4-5 Calculating the Equilibrium Conversion
N2O4 A NA0 -NA0X NA=NA0(1-X) NO2 B NA0X NB=2NA0X NT0=NA NT=NT0+NA0X
70
Example 4-5 Calculating the Equilibrium Conversion
회분식계에서 Ci = Ni / V 이므로, (E4-5.2) (E4-5.3) 평형에서는 X = Xe이고, 식 (E4-5.2)와 식 (E4-5.3)을 식 (E4-5.1)에 대입하면 (E4-5.4)
71
Example 4-5 Calculating the Equilibrium Conversion
분석: 이 예제의 목적은 우선 항 (a)에서 정용회분식계에 대해 평형전화율을 계산하고, 다음으로 항 (b)에서 정압 흐름반응에 대해 평형전화율을 구하는 것이다. 이 반응에서는 전체 몰수의 변화가 있으므로, 결과적으로 두 평형전화율이 같지 않음을 명심해야 한다!! 다음으로 가역기상반응에 대해 어떻게 -rA = f(X)로 나타내는지를 보였다. 마지막으로 항 (d)에서는 -rA = f(X)를 가지고 A의 특정한 몰유량(예를 들어 3.0 mol A/min)에 대해 40%의 전화율을 달성하기 위해 필요한 CSTR의 부피를 계산하였다. 여기서는 제5장과 제6장의 이것과 비슷하지만 더 복잡한 계산을 위해 화공 엔지니어로서 수행할 여러 분석 유형에 대한 통찰력을 제공하고자 이 계산을 다루었다.
72
마무리. 이 장을 마친 후에, 여러분은 액상 및 기상 반응에 대하여 반응속도 매개변수(예를 들어 k, KC)와 전화율 만의 항으로 속도법칙을 나타낼 수 있다. 일단 -rA = f(X)식이 완성되면 제2장에서 배운 것들을 이용하여 CSTR, PFR, PBR, 또는 이것들의 연속 결합에 대해 반응기 크기와 전화율을 계산할 수 있다. 하지만 다음 장에서는 레벤스필 도표에 의존하지 않고 어떻게 더 쉽게 이러한 계산들을 할 수 있는지를 보일 것이다. 또한 이 장을 공부한 후에 여러분은 정용 회분식 반응기나 정압 흐름 반응기에 대해 평형전화율을 계산할 수 있다. 화학양론 속도법칙 몰수지 제5장에서는 결합(combine)과 계산(evaluation)의 집짓기블록에 초점을 맞출 것이며, 이것으로써 등온화학반응기 설계를 위한 알고리듬을 완성하게 될 것이다.
73
N2O NO2 Propellant Formulation: N2O4/UDMH(CH3)2NNH2). Optimum Oxidiser to Fuel Ratio: Temperature of Combustion: 3, deg K. Ratio of Specific Heats: Density: 1.18 g/cc. Characteristic velocity c: 1,720 m/s. Isp Shifting: 285. Isp Frozen: 273. Pp Isp Shifting: 336. Isp: sl. Isp: vac. CH3
Similar presentations