Download presentation
Presentation is loading. Please wait.
Published byBrian Benoît Modified 6년 전
1
자기와 전자 전하(예, 전자)가 움직이면 자기장 발생 거시적 : 전류에 의한 자기장 (Ampere 법칙) 미시적 :
전자의 스핀 : 전자의 궤도운동: 스핀 자기 쌍극자 모멘트 스핀의 자체는 측정할 수 없다. 단지, 임의의 축 방향을 따르는 스핀 성분만 측정할 수 있다. 스핀 각 운동량 스핀 는 양자화되어 있고, 부호가 다른 두 값을 갖는다.
2
자기장에 대한 Gauss 법칙 자기장에 대한 Gauss 법칙 : 비교 : 전기 Gauss 법칙 :
3
정의 양자역학적으로 자기적 기본량! 스핀 의 성분이 축 방향(z방향)으로 측정된다고 가정하자
자체는 측정할 수 없지만, 단지 축과 나란한 성분만 측정할 수 있다. 정의 양자역학적으로 자기적 기본량!
4
외부자기장 속에 전자의 스핀 퍼텐셜 에너지
5
궤도 자기쌍극자 모멘트 궤도 각운동량
6
: 궤도 각운동량 자체는 측정할 수 없지만, 축방향 성분 측정가능하고 양자화되어있다. 외부자기장 속에서 퍼텐셜 에너지
7
전류 스핀(운동) 궤도운동 궤도 및 자체 스핀 +
8
자성체 성질의 근원 및 종류 자성체 성질의 근원 - 전자의 스핀 - 전자의 궤도 운동 - 외부 자기장에 의한 궤도운동의 변화
- 전자의 스핀 - 전자의 궤도 운동 - 외부 자기장에 의한 궤도운동의 변화 paramagnetism(상자성) diamagnetism(반자성) (Cu, Au, Hg, H) 자성체 성질을 나타내는 표현 수단 - 자기화 M(magnetization) : 단위 부피당 자기 모멘트 자기 감수율 : 여기서, B : 거시적 자기장 세기 : 무차원 <0 : diamagnetic >0 : paramagnetic 유사한 개념(전기)
9
반자성( Diamagnetism)의 기원
Langevin Diamagnetism Equation : →외부 자기장에 대해서 반대로 차폐하려고 하는 전자들의 운동으로 유발 → Lenz의 법칙 : 유도전류(유도 자기장)가 외부 자기장 증가를 반대하도록 형성 →“반자성”의 기원 (자석)의 증가 → 결론적으로 외부자기장 인가시 반대방향으로 자화되는 현상
10
상자성(Paramagnetism)의 원리
상자성의 경우 상자성을 위한 전자의 기여 - 홀수개의 전자를 소유하는 원자, 분자, lattice defects → 총스핀≠0 Na NO - 내부 전자 껍질의 일부만 차있는 자유 원자와 이온, 전이원소 예)Mn2+, Gd3+, U4+ - 금속(Metals) 상자성의 두가지 종류 - Curie 항(term) - Pauli 항 (term) → 금속의 경우 (자유전자의 기여)
11
상자성의 원리 : 계속 Curie의 상자성 : 총 스핀이 0이 아니거나 내부 전자껍질이 부분적으로 채워진 이온이나 원자의 경우 발생 - 총자기 모멘트 : Lande 인자 - 퍼텐셜 에너지 Azimuthal 양자수 ↳if, 궤도 자기 모멘트( )이 0(영)이고, 전자 스핀만 있을 경우 →외부자기장 의 인가에 따른 고체 내부의 스핀 각운동량 분포에 따른 결과적인 자기화(M) C : Curie 상수 ; Curie 법칙
12
상자성 원리 : 계속 Pauli 상자성 : 자유전자가 많은 금속의 자성을 설명 ↳ 배경 설명 : 고전적인 자유전자 이론은 전도 자유전자의 상자성 감수율( )을 설명하지 못한다. ↳ (금속) : 금속의 는 온도에 무관(실험결과) ↓ 하지만 Curie 법칙( ) Pauli : Fermi-Dirac 분포를 이용한 설명 →금속내의 대부분 전도 전자들은 외부 자기장이 인가될 때 자기 모멘트가 한쪽 방향으로 정렬 될 가능성이 매우 적다. 왜? 대부분 이미 차있다. EF EF With B=0 M=0
13
Pauli 상자성 : 계속 상자성 종합 ↳양자역학, 통계역학적 계산 후에 →온도 T에 무관함 로 기술 가능함 → Pauli항
Curie항 → 로 기술 가능함
14
강자성과 반자성 강자성(Ferromagnetism) : 외부자기장이 없어도 “자발적 자기 모멘트(spontaneous magnetic moment)”가 있는 경우 바꿈적분(Exchange Integral) : 자기모멘트들끼리 정렬(line up) 되도록 내부적으로 상호작용하는 현상 ↳ Exchange field에 의해서 정렬된다 →Ferromagnet의 중요한 상호작용 Curie 온도(Tc) : Tc 이상에서는 “자발적 자기 모멘트” 정렬이 소멸된다.
15
강자성 : 계속 → : Curie-Weiss 법칙 ↳ M TC T (온도가 낮아질수록 자기모멘트 정렬이 쉬워진다.)
(온도가 낮아질수록 자기모멘트 정렬이 쉬워진다.) TC: Curie 온도
16
강자성 : 계속 강자성 도메인(domain) Hysteresis → Coercivity(HC) : 보자력
→ Remanance(Br) : 잔류자기 ↳H=0일때 존재하는 자기 모멘트
Similar presentations