Download presentation
Presentation is loading. Please wait.
1
13장 카이제곱(χ2)분석 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
2
학습할 내용 적합도 검정 독립성 검정 동질성 검정
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
3
지금까지의 통계적 추론과 분석은 금액, 시간, 판매량과 같이 구간 척도나 비율 척도의 양적 데이터만 다루었고 표본의 평균과 표준편차에 관심을 두었다.
그러나 이 절에서 사용할 데이터는 통계조사를 통해 나타난 관측값을 서열 척도나 명목 척도로 분류하여 얻어진 도수(frequency)에 대한 통계적 추론을 다루려 한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
4
카이제곱분석 성별에 따라 특정 제품의 선호도에 차이가 있는지, 학력에 따라 월 임금 수준에 차이가 있는지를 분석하고자 할 때 다음의 표와 같이 범주별로 데이터를 분류하여 얻은 도수들을 정리한 표를 이용. 이를 분할표(contingency table)라 한다. 카이제곱(χ2)분석은 위의 표와 같은 분할표를 통해 변수들 간의 관련성의 존재 여부를 검정하기 위해 관측 도수와 기대 도수(expected frequency)와의 차이에 근거를 둔 검정 통계량 χ2 을 이용한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
5
검정 통계량 χ2 검정통계량 χ2 은 관측 도수와 기대 도수와의 차이에 근거를 두고 있으며, 다음과 같이 분할표의 각 조합에 대해 관측 도수(Oi )와 기대 도수(Ei) 간의 차이의 제곱을 기대 도수(Ei)로 나눈 값들의 합으로 계산한다. χ2 은 자유도 (k-1)의 카이제곱(χ2)분포를 따른다. 위의 검정통계량에 대해 관찰 도수와 기대 도수와의 차이가 없으면 은 0에 가까울 것이고, 반대로 관찰 도수와 기대 도수와의 차이가 클수록 χ2 은 커질 것이다. 검정 통계량 값이 커지면 p-값이 작아지므로 귀무가설을 기각할 확률이 커진다는 것을 의미한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
6
적합도 검정, 독립성 검정, 동질성 검정 적합도 검정(goodness of fit test)은 관측값이 특정한 확률분포를 따르는지는 검정하는 방법이고, 독립성 검정(independence test)은 분할표 상에서 변수들 간의 연관성을 검정. 동질성 검정(homogeneity test)은 분할표 상의 두 변수에 대해서 모집단 비율이 같은지를 검정하는 방법. 동질성 검정과 독립성 검정은 단지 가설에서 차이가 나며 검정방법은 동일하다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
7
엑셀에서 카이제곱분석 엑셀에서 카이제곱분석은 [데이터 분석]을 이용할 수 없고, 함수를 사용해야 하는데 다음과 같이 두 가지 방법이 있다. 함수 CHIDIST를 이용하려면 의 관측 도수 (Oi ) 에 대해 기대 도수 (Ei) 를 계산한 다음 검정 통계량 χ2 을 계산해야만 p-값을 계산할 수 있다. 반면에 함수 CHITEST는 관측 도수에 대해 기대 도수만 계산하면 p-값을 계산할 수 있다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
8
13.1 적합도 검정 적합도 검정은 관측값(또는 표본)이 특정한 확률분포를 따르는지는 검정할 때 사용하는 분석방법으로,
주사위의 각 눈금에 대한 도수를 이용하여 이 주사위가 균등하게 만들어진 것인지, 소득의 분포가 균등한지 또는 월 생활비를 조사하기 위해 추출한 표본은 정규분포를 따르는지를 알아보고자 할 때 사용한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
9
[예제 13-1] 주사위에 대한 적합도 검정 주사위를 120번 던져서 나온 눈금의 도수는 다음과 같다. 표의 도수를 이용하여 이 주사위가 균등하게 만들어진 것인지에 대해 가설을 세우고 유의수준 5%하에서 검정하시오. [풀이] 만약 이 주사위가 균등하게 이상적으로 만들어진 것이라면 각 눈금이 나올 확률은 1/6이다. 따라서 적합도 검정은 주사위를 120번 던졌을 경우 1의 눈이 나온 도수가 이론적인 기대 도수 20회에 적합한지를 검정하는 방법이다. 이 예제에서 주사위 눈금에 대한 분포는 모든 눈금에 대한 발생 확률이 1/6 로 균등하므로 균등분포(uniform distribution)를 따르고 가설은 다음과 같다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
10
[예제 13-1] 주사위에 대한 적합도 검정 이 예제에서 모든 눈금에 대한 기대 도수는 20으로 동일하다. [표 13-3]의 내용에 대해 관측 도수(Oi ), 기대 도수 (Ei) 를 [그림 13-1]과 같이 입력하고, (Oi - Ei)와 (Oi – Ei)2/ Ei 을 계산. 이어서 8행에 각 열에 대한 합계를 계산. E8 셀 : 검정 통계량 χ2 =7.8 검정 통계량 계산과정 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
11
[예제 13-1] 주사위에 대한 적합도 검정 검정 통계량 =7.8
검정 통계량 =7.8 검정통계량이 계산되면 함수 CHIDIST를 이용하여 p-값을 계산할 수 있다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
12
셀 B10에 계산된 p-값은 0. 167로써 유의수준(0. 05)보다 크므로 귀무가설(H0: 각 눈금의 확률은 동일하다
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
13
[참고] 적합도 검정에 대한 SPSS 결과 검정 통계량은 7.8이고, p-값은 0.167로써 유의수준(0.05)보다 크므로 귀무가설(H0: 각 눈금의 확률은 동일하다.)을 기각할 수 없다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
14
13.2 독립성 검정 흡연과 폐암, 교육수준과 임금수준, 성별과 정당선호도와 같이 두 변수 간의 관계가 서로 독립인지 아닌지를 분석하는 방법을 독립성 검정이라 한다. 독립성 검정 결과는 두 변수가 서로 독립인지 아닌지를 판단하며, 만약 독립이 아니라면 두 변수 간에 관련성이 있다고 해석한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
15
[예제 13-2] 남녀 간 차이에 대한 독립성 검정 재학생 100명을 대상으로 교내에 설치된 자판기 이용에 대한 만족도를 조사한 결과이다. 이 분할표를 근거로 자판기 이용의 만족도는 성별과 관계가 있는지에 대해 가설을 세우고 유의수준 5% 하에서 검정하시오. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
16
[예제 13-2] 남녀 간 차이에 대한 독립성 검정 [풀이]
자판기 이용의 만족도는 성별과 관계가 있는지를 알아보려는 것으로 가설은 다음과 같다. 가설 표시 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
17
[예제 13-2] 남녀 간 차이에 대한 독립성 검정 검정 통계량 χ2의 계산
검정통계량 계산에 있어서 기대 도수 Eij는 다음과 같이 계산한 도수와 확률의 곱으로 계산한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
18
기대도수 Eij 의 계산 두 변수 들이 서로 독립적이라면 결합 확률 P(A∩B)은 주변 확률의 곱인 P(A)ⅹP(B)와 같다. 따라서 기대 도수 Eij는 (i행의 합)×(전체 합계 중에서 j열의 합계가 차지하는 비율)로써 만약 두 변수가 서로 독립이라면 뒷부분인 (전체 합계 중에서 j열의 합계가 차지하는 비율)은 모든 행에 대해서 같은 값을 갖게 된다. 따라서 관측 빈도 20( i=2, j=1)에 대한 기대 빈도는 다음과 같이 계산한다. 계산 결과 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
19
기대도수 Eij 의 계산 기대 도수를 계산하려면 행과 열에 대한 합과 전체 도수의 합을 미리 계산해야 한다. 기대 도수의 계산
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
20
혼합참조 주소를 이용한 기대도수 Eij 의 계산
기대 도수는 관측 빈도의 행과 열에 대해 공통점이 있으므로 엑셀에서 혼합 참조 주소를 이용하면 채우기 핸들을 사용하여 쉽게 계산할 수 있다. 셀 B2에 대한 기대 빈도는 =$D2*B$5/$D$5 와 같이 계산할 수 있다. D앞에 $가 붙어서 D열은 고정되고 5행 앞에 $가 붙어 있으므로 5행이 고정된다는 의미이다. 혼합참조 주소를 이용한 기대 도수의 계산 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
21
혼합참조 주소를 이용한 기대도수 Eij 의 계산
셀 B7은 셀 B2에 대한 기대 도수이므로 나머지 기대 도수를 채우기 핸들을 이용하여 계산한다. 계산된 기대 도수 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
22
P-값의 계산 기대 빈도를 계산했으므로 함수 CHITEST를 이용하여 가설에 대한 p-값을 계산할 수 있다. P-값의 계산
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
23
가설 검정 계산된 p-값은 로서 유의수준(0.05)보다 작으므로 귀무가설(H0: 성별과 만족도는 독립적이다)을 기각한다. 결론적으로 성별과 자판기 만족도는 독립이 아니며 남녀별로 만족도에 차이가 있다고 할 수 있다. 검정 결과 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
24
[참고] 독립성 검정에 대한 SPSS 결과 기대빈도는 분할표 상에 계산되어 있으며 검정 통계량의 값은 7.706이며 p-값은 0.021로서 유의수준(0.05)보다 작으므로 귀무가설(H0: 성별과 만족도는 독립적이다)을 기각한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
25
13.3 동질성 검정 동질성 검정은 분할표 상의 두 변수에 대해서 모집단 비율이 같은지를 검정하는 방법이다.
동질성 검정과 독립성 검정은 단지 가설에서 차이가 나며 검정방법은 같다. 동질성 검정은 표본 집단이 동일한 모집단 비율을 갖는 모집단으로부터 추출된 것인지를 확인하기 위해서 독립성 검정과는 달리 표본의 크기를 같게 해야 한다. 독립성 검정과 동질성 검정의 표본 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
26
독립성 검정과 동질성 검정의 차이 독립성 검정 동질성 검정
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
27
[예제 13-3] 찬반의견에 대한 동질성 검정 직장인 남녀 각각 100명에 대해 근무 시 개인적인 인터넷 사용 규제에 대해 찬반의견을 종합한 결과는 다음과 같다. 이 표를 근거로 남녀 간의 찬반의견에 차이가 있는지에 대해 가설을 세우고 유의수준 5% 하에서 가설을 검정하시오. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
28
혼합참조 주소를 이용한 기대도수 Eij 의 계산
셀 B2(남자 중에서 찬성자)에 대한 기대 도수는 셀 B6에 =$D2*B$4/$D$4로 계산한다. 혼합참조 주소를 이용한 기대 도수의 계산 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
29
P-값의 계산 기대 빈도를 계산했으므로 함수 CHITEST를 이용하여 가설에 대한 p-값을 계산할 수 있다. P-값의 계산
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
30
가설 검정 계산된 p-값은 0.003으로서 유의수준(0.05)보다 작으므로 귀무가설(H0: 남녀 간에 찬반의견의 비율은 같다)을 기각한다. 결론적으로 성별에 따라 인터넷 규제에 대한 찬반의견의 비율은 다르다(차이가 있다)고 할 수 있다. 검정 결과 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
31
[참고] 동질성 검정에 대한 SPSS 결과 검정 통계량은 8.791이고, p-값은 0.003으로서 유의수준(0.05)보다 작으므로 귀무가설(H0: 남녀 간에 찬반의견의 비율은 같다)을 기각한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
32
[단원정리] 1/6 카이제곱분석이란? χ2 은 자유도 (k-1)의 카이제곱(χ2)분포를 따른다.
성별에 따라 특정 제품의 선호도에 차이가 있는지, 학력에 따라 월 임금수준에 차이가 있는지를 분석하고자 할 때 범주별로 데이터를 분류하여 얻은 도수들을 정리한 표를 이용하는데 이를 분할표라 한다. 카이제곱(χ2 )분석은 분할표를 통해 변수들 간의 관련성의 존재 여부를 검정하기 위해 관측 도수와 기대 도수(expected frequency)와의 차이에 근거를 둔 검정 통계량 을 이용한다. 카이제곱분석의 검정 통계량 χ2 은 관측 도수와 기대 도수와의 차이에 근거를 두고 있다. χ2 은 자유도 (k-1)의 카이제곱(χ2)분포를 따른다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
33
[단원정리] 2/6 기대빈도의 계산 검정 통계량 χ2의 계산 검정통계량 계산에 있어서 기대 도수 Eij는 다음과 같이
계산한 도수와 확률의 곱으로 계산한다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
34
[단원정리] 3/6 카이제곱분석 방법 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
35
[단원정리] 4/6 독립성검정과 동질성검정의 차이 동질성 검정과 독립성 검정은 단지 가설에서 차이가 나며 검정방법은 같다.
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
36
[단원정리] 5/6 엑셀에서 카이제곱 분석방법 1 엑셀에서 카이제곱분석은 [데이터 분석]을 이용할 수 없고, 함수를 사용해야 하는데 다음과 같이 두 가지 방법이 있다. 함수 CHIDIST를 이용하려면 관측 도수에 대해 기대 도수를 계산한 다음, 검정통계량 χ2 을 계산해야만 p-값을 계산할 수 있다. 반면에 함수 CHITEST는 관측 도수에 대해 기대 도수만 계산하면 p-값을 계산할 수 있다. © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
37
[단원정리] 6/6 엑셀에서 카이제곱 분석방법 2 © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2019년 2월 24일 오전 3시 39분2019년 2월 24일 오전 3시 39분
Similar presentations