Handbook of Applied Cryptography - CH1, from 1.7~1.13-

Slides:



Advertisements
Similar presentations
2016 년도 1 학기 정보보호관리체계 (ISMS) 인증 이 강 신
Advertisements

Cryptography and Network Security Chapter 6. Multiple Encryption & DES clear a replacement for DES was needed  theoretical attacks that can break it.
김예슬 김원석 김세환. Info Northcutt Bikes Northcutt Bikes The Forecasting problem The Forecasting problem The solution 1~6 The.
SSL (Secure Socket Layer) 중부대학교 정보보호학과 이병천 교수. 웹 보안 구현방법  네트워크 계층에서의 구현방법  특징  IP 계층에 보안 기능을 둠  IP Sec  응용계층의 모든 응용서비스에 보안성 제공  VPN(Virtual Private.
HTTPS Packet Capture Tutorial
국 제 통 상 법 개 론 서강대학교 법학과 왕 상 한 교수.
번역관련 자격증 소개 및 시험 대비 안내 정 윤 희.
* 07/16/96 처음으로 배우는 C 프로그래밍 제1부 기초 제1장 시작하기 *.
DICOM Security 디지털정보융합학과 심영복.
Building Enterprise VPNs
Chapter 7 ARP and RARP.
Yih-Chun Hu David B. Johnson Adrian Perrig
10. 전자상거래 보안 e-commerce security
Chapter 3 데이터와 신호 (Data and Signals).
Cryptography and Network Security
암호화 기술(SSL, IPSec) 손재성 권기읍 안복선 최준혁
Security.
Access Control.
IPsec 석진선.
암호 이야기 - 보이지 않는 전쟁 -.
DES (Data Encryption Standard)
Chapter 3. Architecture AI & HCI Lab 김 주 영.
Internet Computing KUT Youn-Hee Han
‘CEO의 8가지 덕목’ 탁월한 리더의 공통점 ‘무엇을 하고 싶나’ 보다 ‘무엇을 해야 하나’ 를 물음
Chapter 8 목차 8.1 네트워크 보안이란 무엇인가? 8.2 암호학의 원리 8.3 메시지 무결성 8.4 종단점 인증
발표제목 발표제목 둘째 줄 2000년 11월 송 홍 엽 연세대학교 전기전자공학과 송 홍 엽
Chapter 10 네트워크 보안.
SmileEDI 가입 안내서 1. SmileEDI `회원가입 절차 -SmileEDI 접속 방법-
Chapter 2 OSI 모델과 TCP/IP 프로토콜.
키 관리 및 인증, 전자서명 4조: 최선욱 조성호 Kangwon National University Samcheok Campus Information & Communication Eng.
Chapter 15 키 관리 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
스마트카드에 있어서 암호의 응용 Computer Security & E-Payment System
6장. 물리적 데이터베이스 설계 물리적 데이터베이스 설계
PPP (Point-to-Point Protocol)
Ch. 5 : Analog Transmission
MEAN Stack Front to Back (MEANAuthApp)
목 차 PGP S/MIME. 전자우편 보안 Security 목 차 PGP S/MIME.
네트워크 보안 3 오 세 종.
Cognitive radio Either a network or a wireless node changes its transmission or reception parameters to communicate efficiently avoiding interference with.
KMS 구현 및 활용사례 경쟁력 강화를 위한 2002년 5월 28일(화) 김 연 홍 상무 / 기술사
Non-repudiation Mechanisms using asymmetric techniques (ISO_IEC )
Security Problem & Solution Computer Engineering Sejin Oh.
An Example for Use of Public Key -인증서요청과발급
전자서명의 형태 수기서명 디지털서명. 전자서명의 형태 수기서명 디지털서명 전자서명의 필요성.
Course Guide - Algorithms and Practice -
TimeStamp를 활용한 전자문서 진본성 확보
User Datagram Protocol (UDP)
McGraw-Hill Technology Education
지난주 Quiz와 이번주 Reading Q3. 한국정치학 연구는 유럽정치학의 강력한 영향력 아래 놓여 왔다고 종종 비판 받는다. 참 ( O ) 거짓 ( O ) 이번 주 Reading Anthony Downs (1957) Ch 8. 일부.
2. CONCEPTS 컴퓨터 네트워크 실험실 석사 1학기 강 동 호.
SmileEDI 가입 안내서 1. SmileEDI `회원가입 절차 -SmileEDI 접속 방법-
컬럼 대칭키 암호화 작업(SQL 2008) ① 마스터 키 생성 ② 인증서 생성 초기 한번만 실행 ③ 대칭키 생성
Hijacking Bitcoin : Routing Attacks on Cryptocurrencies Maria Apostolaki Aviv Zohar Laurent Vanbever Presentor Geun Woo Lim Many parts of.
Chapter 1 개요.
시스템 분석 및 설계 글로컬 IT 학과 김정기.
Operating System Multiple Access Chatting Program using Multithread
Chapter 1 개요.
1. 관계 데이터 모델 (1) 관계 데이터 모델 정의 ① 논리적인 데이터 모델에서 데이터간의 관계를 기본키(primary key) 와 이를 참조하는 외래키(foreign key)로 표현하는 데이터 모델 ② 개체 집합에 대한 속성 관계를 표현하기 위해 개체를 테이블(table)
Chapter 3. Public Key Infrastructure
이산수학(Discrete Mathematics)
The general form of 0-1 programming problem based on DNA computing
Introduction of Network Security & Blockchain
6장 정보분류 신수정.
Christian F. Tschudin 발표자 : 전기공학부 이 진 호
Hongik Univ. Software Engineering Laboratory Jin Hyub Lee
스포츠클럽 설명 자료 스포츠클럽 Copyright © All Rights Reserved.
[CPA340] Algorithms and Practice Youn-Hee Han
Chapter 4. Energy and Potential
MEAN Stack Front to Back (MEANAuthApp)
Chapter 7: Deadlocks.
Presentation transcript:

Handbook of Applied Cryptography - CH1, from 1.7~1.13- Howon Kim 2017. 9.11

1.7 Authentication & Identification 다양한 의미를 가짐 entity authentication(identification), message authentication(data origin authentication), data integrity, non-repudiation, and key authentication.

1.7.1 Identification 식별: 둘 중에서 하나가 참여한 나머지 두번째 party의 identity를 보장함 그리고 그 두번째 party는 evidence가 수집될 때 active해짐

1.7.2 Data origin authentication 메시지 인증: 메시지를 전송한 party 의 신원(identity)를 메시지 보증을 받는 party에게 제공함 .

1.8 Public Key Cryptography

1.8 Public Key Cryptography e: Bob의 public key d: Bob의 private key

1.8 Public Key Cryptography

1.8.2 The necessity of authentication in public-key systems Adversary가 A에게 자신의 공개키(e’)을 보냄(마치 B의 공개키 e인척함) A는 B에게 보낼 msg를 Adversary의 공개키로 암호화해서 보내게 됨 PKC 시스템에서의 impersonation 취약성 문제 Figure 1.13 illustrates how an active adversary can defeat the system (decrypt messages intended for a second entity) without breaking the encryption system. This is a type of impersonation

1.8.3 Digital signatures from reversible public-key encryption

1.8.3 Digital signatures from reversible public-key encryption

1.8.4 Symmetric-key vs. Public Key Cryptography

1.8.4 Symmetric-key vs. Public Key Cryptography

1.8.4 Symmetric-key vs. Public Key Cryptography

1.8.4 Symmetric-key vs. Public Key Cryptography

1.9 Hash functions

1.10 Protocols and mechanisms

1.11 Key establishment, management, and certification

1.11.1 key management through symmetric-key technique nC2 The need for TTP(Trusted Third Party) for symmetric key management

1.11.2 key management through public-key tech. Advantages of this approach include: No trusted third party is required. The public file could reside with each entity. Only n public keys need to be stored to allow secure communications between any pair of entities, assuming the only attack is that by a passive adversary.

1.11.2 key management through public-key tech. To prevent this type of attack, the entities may use a TTP to certify the public key of each entity. The TTP has a private signing algorithm ST and a verification algorithm VT assumed to be known by all entities.

1.11.2 key management through public-key tech.

1.11.3 Trusted third parties and public-key certificate

1.12 Pseudorandom numbers and sequences

1.13 Classes of attacks & security models Passive Attack vs. Active Attack Passive Attack: In passive attack, the attacker only monitors the communication channel That is, this is a threats for confidentiality of data Active Attack: The attacker attempts to delete, add, or in some other way alther the transmission on the channel This attack threaten data integrity and authentication as well as confidentiality

1.13.1 Attacks on encryption schemes (1/2) The purpose of this attack is Recover plaintext from ciphertext or even to deduce the decryption key (1) Ciphertext only attack Deduce the decryption key or plaintext only observing from the ciphertext (2) Known plaintext attack the adversary has a quantity of plaintext and corresponding ciphertext. (3) Chosen plaintext attack The adversary chooses plaintext and is then given corresponding ciphertext. Subsequently, the adversary uses any information deduced in order to recover plaintext corresponding to previously unseen ciphertext. (4) Adaptive chosen plaintext attack This is an is a chosen-plaintext attack wherein the choice of plaintext may depend on the ciphertext received from previous requests.

1.13.1 Attacks on encryption schemes (2/2) (5) Chosen ciphertext attack This attack is one where the adversary selects the ciphertext and is then given the corresponding plaintext. One way to mount such an attack is for the adversary to gain access to the equipment used for decryption (but not the decryption key, which may be securely embedded in the equipment). The objective is then to be able, without access to such equipment, to deduce the plaintext from (different) ciphertext. (6) Adaptive Chosen ciphertext attack This is a chosen-ciphertext attack where the choice of ciphertext may depend on the plaintext received from previous request

1.13.2 Attacks on protocols (1) Known key attack In this attack an adversary obtains some keys used previously and then uses this information to determine new keys. (2) Replay attack In this attack an adversary records a communication session and replays the entire session, or a portion thereof, at some later point in time. (3) Impersonation attack Here an adversary assumes the identity of one of the legitimate parties in a network. (4) Dictionary attack This is usually an attack against passwords.

1.13.2 Attacks on protocols (5)Forward search This attack is similar in spirit to the dictionary attack and is used to decrypt messages. Suppose that in an electronic bank transaction the 32 bit field which records the value of the transaction is to be encrypted using a public-key scheme. This simple protocol is intended to provide privacy of the value field – but does it? An adversary could easily take all 2^32 possible entries that could be plaintext in this field and encrypt them using the public encryption function. (Remember that by the very nature of public-key encryption this function must be available to the adversary.) By each of the 2^32 ciphertexts with the one which is actually encrypted in the transaction, the adversary can determine the plaintext. Here the public-key encryption function is not compromised, but rather the way it is used. (6) Interleaving attack This 공개키로 암호화를 통해 보안성 유지하는 경우 공격자는 금액 field의 모든 경우의 값(2^32)을 생성한 후, 공개키로 암호화 시켜서 가지고 있고, 암호화된bit 패턴에 해당하는 것을 찾아서 어떤 금액인지 바로 알 수 있음  이로서, 공개키 암호 키에 대한 private key를 공격없이 해당 공개키 암호시스템은 crack 된 것임 금액(32bits)

1.13.2 Attacks on protocols (5) Interleaving attack (1/2) This type of attack usually involves some form of impersonation in an authentication protocol (see x12.9.1). (1)은 challenge이며, (2)는 challenge에 대한 response(rA가 B의 비밀키로 서명됨, B의 공개키로 풀어서 rA에 대한 서명값 확인하면, B가 맞구나라고 인증함. 추라 challenge를 A에 보냄(rB) (3)은 2nd response임. 즉,받은 rB를 A의 비밀키로 서명해서 보냄.

1.13.2 Attacks on protocols (5) Interleaving attack (2/2) E ~ B 사이의 프로토콜은 앞의 프로토콜과 완전히 동일함. E는 B를 속여서 A인것처럼 동작함 (5) Interleaving attack (2/2) (2), (3) 프로토콜 내용을 바꾼다면 이런 공격은 피할 수는 있음. 혹은 메시지 ID를 부여하면 (2’)은 A~E 사이의 (2)번 메시지이지, E~B사이의 (3)번 메시지로 오인되지는 않음 혹은 (3)의 rA’을 rA로 바꾼다면, E가 보낸 rA와 A의 rA’을 같게 만들 방법이 없으므로 이 공격 해결가능함

1.13.3 Models for evaluation security The model for evaluation of security (1/3) The most practical security metrics are computational, provable, and ad-hoc methodology (1) Unconditional security

1.13.3 Models of evaluation security (2) Complexity theoretic security (3) Provable security

1.13.3 Models of evaluation security (4) Computational security

1.13.3 Models of evaluation security (5) Ad-hoc security

1.13.4 Perspective for computational security To evaluate the security of cryptographic schemes, certain quantities are often considered.

1.13.4 Perspective for computational security