Machine Learning & Deep Learning

Slides:



Advertisements
Similar presentations
연천 새둥지마을 체재형 주말농장 준공식 초청장 오시는 길 주제 일시 장소 21C 경기농촌희망심기 2005년 제1기 교육수료마을
Advertisements

SPARCS Wheel Seminar Mango X Sugoi
출석수업 자료 교과서 범위: 제1장-4장.
10월 충북노회 남선교회 순회 헌신예배 묵 도 기 도 성 경 봉 독 특 송 찬 양 설 교 찬양 / 봉헌 봉 헌 기 도
글에 나타난 시대적 사회적 배경을 파악할 수 있다. 배경 지식과 의미 해석의 관련성을 이해할 수 있다.
패널자료 분석
라오디게아 교회의 교훈 본문 계 3: ○라오디게아 교회의 사자에게 편지하라 아멘이시요 충성되고 참된 증인이시요 하나님의 창조의 근본이신 이가 이르시되 15. 내가 네 행위를 아노니 네가 차지도 아니하고 뜨겁지도 아니하도다 네가 차든지 뜨겁든지 하기를 원하노라.
한알Ⅱ「더불어 살기」전국대회 일정표 날짜 시간 7월 26일(목) 7월 27일(금) 7월 28일(토) 7월 29일(일)
2013학년도 전라북도고등학교신입생 입학전형 기본계획
선거관리위원회 위원 공개모집 4차 공고 제4기 선거관리위원회를 구성하는 위원 모집의
2015학년도 1학기 버디 프로그램 오리엔테이션 (목) 16:00.
열왕기하 1장을 읽고 묵상으로 예배를 준비합시다..
오늘의 학습 주제 Ⅱ. 근대 사회의 전개 4. 개항 이후의 경제와 사회 4-1. 열강의 경제 침탈 4-2. 경제적 구국 운동의 전개 4-3. 사회 구조와 의식의 변화 4-4. 생활 모습의 변화.
전도축제 계획서 *일시 : 2013년 4월 21, 28일 주일 (연속 2주)
2009학년도 가톨릭대학교 입학안내.
한국 상속세 및 증여세 과세제도 한국 국세공무원교육원 교 수 최 성 일.
중세시대의 의복 학번 & 이름.
다문화가정의 가정폭력의 문제점 연세대학교 행정대학원 정치행정리더십 2학기 학번 이름 홍 진옥.
이공계의 현실과 미래 제조업 立國 / 이공계 대학생의 미래 준비
신앙의 기초를 세우는 중고등부 1부 대 예 배 : 11 : 00 ~ 12 : 층 본당
신앙의 기초를 세우는 중고등부 1부 대 예 배 : 11 : 00 ~ 12 : 층 본당
◆ 지난주 반별 출석 보기 ◆ 제 56 권 26호 년 6월 26일 반 선생님 친구들 재적 출석 5세 화평 김성희 선생님
第1篇 자치입법 개론.
교직원 성희롱·성폭력·성매매 예방교육 벌교중앙초등학교 박명희
제5장 새로운 거버넌스와 사회복지정책 사회복지정책이 어떤 행위자에 의해 형성되고 집행되는지, 어떤 과정에서 그러한 일들이 이루어지는지, 효과적인 정책을 위해서는 어떤 일들이 필요한지 등을 본 장에서 알아본다 개인들이 생활을 개선하는 가장 효과적인고 궁극적인 방법은 개별적.
임상시험 규정 (최근 변경 사항 중심으로) -QCRC 보수 교육 과정 전달 교육
서울특별시 특별사법경찰 수사 송치서류 유의사항 서울특별시 특별사법경찰과 북부수사팀장 안   진.
특수학교용 아동학대! 제대로 알고 대처합시다..
사회복지현장의 이해 Generalist Social Worker 사회복지입문자기초과정 반포종합사회복지관 김한욱 관장
학교보건 운영의 실제 한천초등학교 이 채 금.
제 출 문 고용노동부 귀중 본 보고서를 ’ ~ ‘ 까지 실시한 “근로감독관 직무분석 및 교육프로그램 개발에 관한 연구”의 최종보고서로 제출합니다  연구기관 : 중앙경영연구소  프로젝트 총괄책임자 : 고병인 대표.
학습센터란? 기도에 관해 배울 수 있는 다양한 학습 코너를 통하여 어린이들이 보다 더 쉽게 기도를 알게 하고, 기도할 수 있게 하며, 기도의 사람으로 변화될 수 있도록 하는 체험학습 프로그램이다. 따라서 주입식이지 않으며 어린이들이 참여할 수 있는 역동적인 프로그램으로.
Digital BibleⅢ 폰속의 성경 디지털 바이블 2008년 12월 ㈜씨엔커뮤니케이션 ㈜씨엔엠브이엔오.
후에 70인역(LXX)을 좇아 영어 성경은 본서의 중심 주제인 “엑소도스”(출애굽기)라 하였다.
성 김대건 피츠버그 한인 성당 그리스도왕 대축일 공지사항
예배에 대하여.
말씀 듣는 시간입니다..
하나님은 영이시니 예배하는 자가 신령과 진정으로 예배할지니라.
지금 나에게 주신 레마인 말씀 히브리서 13장 8절.
예수의 제자들 담당교수 : 김동욱.
Lecture Part IV: Ecclesiology
KAINOS 날마다 더하여지는 Kainos News 이번 주 찬양 20 / 300 – 20개의 셀, 300명의 영혼
예배의 외부적인 틀II - 예배 음악 조광현.
영성기도회 렉시오 디비나와 묵상기도 2.
성인 1부 성경 공부 지도목사: 신정우 목사 부 장: 오중환 집사 2010년. 5월 9일
남북 탑승객 150명을 태운 디젤기관차가 2007년 5월 17일 오전 경의선 철길을 따라 남측 최북단 역인 도라산역 인근 통문을 통과하고 있다. /문산=사진공동취재단.
성경 암송 대회 한일교회 고등부 (일).
천주교 의정부교구 주엽동본당 사목협의회 사목활동 보고서
III. 노동조합과 경영자조직 노동조합의 이데올로기, 역할 및 기능 노동조합의 조직형태 노동조합의 설립과 운영
여수시 MICE 산업 활성화 전략 ( 중간보고 )
1. 단위사업 관리, 예산관리 사업설정 (교직원협의/의견수렴) 정책 사업 학교 정책 사업 등록 사업 기본정보 목표 설정
※과정 수료자에 한하여 수강료의 80~100% 차등 환급함
평생학습중심대학 프로그램 수강지원서 접수안내 오시는 길 관악구&구로구민을 위한 서울대학교 -- 접수 일정 및 방법 안내--
서비스산업의 선진화, 무엇이 필요한가? 김 주 훈 한 국 개 발 연 구 원.
기존에 없던 창업을 하고 싶은데, 누구의 도움을 받아야 할지 모르겠어요
전시회 개요 Ⅰ. 전시명칭 개최기간 개최장소 개최규모 주 최 참 관 객 현 지 파 트 너 General Information
Homeplus 일 家 양 득 프로그램 소개 2015년 12월.
Home Network 유동관.
통신이론 제 1 장 : 신호의 표현 2015 (1학기).
I. 기업과 혁신.
Chapter 4 – 프로그래밍 언어의 구문과 구현 기법

ESOCOM – IPIX 고정IP서비스 제안서 Proposer ㈜이소컴.
화장품 CGMP 한국콜마㈜.
초화류 종자 시장 규모 100억원 이상(추정, 생산액의 10%정도 차지)
COMPUTER ARCHITECTIRE
[ 한옥 실측 ] 1. 약실측 2. 정밀실측 조선건축사사무소.
14. 컴파일러 자동화 도구 스캐너 생성기 파서 생성기 코드 생성의 자동화
A제조용수/B환경관리/C시설관리 ㈜ 에이플러스 코리아
Introduction to Network Security
Presentation transcript:

Machine Learning & Deep Learning

Measuring performance for classification confusion matrix

Measuring performance for classification confusion matrix

Estimating future performance Holdout method 일반적으로, 전체데이터의 2/3 => training, 1/3 => testing holdout을 여러 번 반복하여 best model을 취함 test data는 model 생성에 영향을 미치지 않아야 함 하지만, random하게 잡은 training data에 대하여 다수의 model을 생성한 후, test data에 대 하여 best model을 찾는 것이어서, hold-out 기법에서의 test performance는 공정하지 않음

Estimating future performance Holdout 기법의 문제점을 해소하기 위해 전체 데이터 집합을 => training, test, validation 집합으로 나눔 Validation data: model 개선 및 최종 선택 시 활용 Test data: 미래 예측 (또는 분류)에 대한 최종 평가단계에서 “1회” 사용

Performance Evaluation

Neural Networks

Neural Networks

Logistic Regression vs. Neural Networks

Neural Networks

AND/OR problem

Multilayer Perceptrons No one on earth had found a viable way to train. Marvin Minsky, 1969

Backpropagation

Backpropagation A dataset Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc …

Backpropagation Training the neural network Fields class 1.4 2.7 1.9 0 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc …

Backpropagation 초기 weight값은 random하게 설정 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc …

Backpropagation Training data를 하나씩 입력 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 1.9

Backpropagation 각 노드의 activation 결과에 따라 출력값 계산 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 0.8 1.9

Backpropagation 계산된 출력값과 실제 정답 출력값을 비교 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 0.8 1.9 error 0.8

Backpropagation Error값에 따라 weight 조정 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 1.4 2.7 0.8 1.9 error 0.8

Backpropagation 또 새로운 training data를 입력 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 1.7

Backpropagation 각 노드의 activation 결과에 따라 출력값 계산 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1.7

Backpropagation 1 계산된 출력값과 실제 정답 출력값을 비교 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1 1.7 error -0.1

Backpropagation 1 Error값에 따라 weight 조정 Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1 1.7 error -0.1

Backpropagation 1 Training data Fields class 1.4 2.7 1.9 0 6.4 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc … 6.4 2.8 0.9 1 1.7 error -0.1 Error 가 임계점 이하로 떨어질 때까지 weight 조정을 반복

Backpropagation 노드의 연산 입력 노드: 받은 신호를 단순히 전달 출력 노드: 합 계산과 활성 함수 계산 2019-04-24

Backpropagation 예) 이 퍼셉트론은 w=(1,1)T, b=-0.5 따라서 결정 직선은 나머지 b, c, d는? 이 퍼셉트론은 w=(1,1)T, b=-0.5 따라서 결정 직선은 2019-04-24

Backpropagation 퍼셉트론 학습 예) AND 분류 문제 1 x1 ? y x2 a b c d a=(0,0)T b=(1,0)T c=(0,1)T d=(1,1)T ta= -1 tb= -1 tc= -1 td=1 1 x1 ? y x2 a b c d 2019-04-24

Backpropagation 단계 1 단계 2 식 (4.2) 매개변수 집합 Θ={w, b} 분류기 품질을 측정하는 J(Θ)를 어떻게 정의할 것인가? Y: 오분류된 샘플 집합 J(Θ)는 항상 양수 Y가 공집합이면 J(Θ)=0 |Y|가 클수록 J(Θ) 큼 2019-04-24

Artificial Neural Networks 단계 3 J(Θ)=0인 Θ를 찾아라. Gradient descent method (내리막 경사법) 현재 해를 방향으로 이동 학습률 ρ를 곱하여 조금씩 이동 2019-04-24

Backpropagation 알고리즘 스케치 알고리즘에 필요한 수식들 초기해를 설정한다. 멈춤조건이 만족될 때까지 현재 해를 방향으로 조금씩 이동시킨다. 알고리즘에 필요한 수식들 Learning rate 내리막 방향으로 조금씩 이동 2019-04-24

Artificial Neural Networks w(0)=(-0.5,0.75)T, b(0)=0.375 ① d(x)= -0.5x1+0.75x2+0.375 Y={a, b} ② d(x)= -0.1x1+0.75x2+0.375 Y={a} 2019-04-24

Artificial Neural Networks Deep Networks An abstracted feature Non-output layer = Auto-encoder Input layer Output layer Hidden layer Hierarchical feature layer output layer쪽으로 갈수록 Feature abstraction이 강해짐

Artificial Neural Networks Deep Networks Learning Multi-layer network 학습을 한꺼번에 하지 않고, 각 layer별로 단계 적으로 수행

Feature detectors

what is each of nodes doing?

Hidden layer nodes become self-organised feature detectors 1 5 10 15 20 25 … … 1 strong +ve weight low/zero weight 63

What does this unit detect? 1 5 10 15 20 25 … … 1 strong + weight low/zero weight Top row에 있는 pixel에 강하게 반응하는 feature 63

What does this unit detect? 1 5 10 15 20 25 … … 1 strong + weight low/zero weight Top left corner의 dark 영역에 강하게 반응하는 feature 63

Deep Neural Networks etc … etc … Feature abstraction v 특정 위치의 line을 layer etc … Feature abstraction Line-level feature들을 이용하여 윤곽을 탐지하는 feature들의 layer etc … v

Deep Neural Networks Feature abstraction

Backpropagation

Breakthrough in 2006 & 2007 by Hinton & Bengio

Breakthrough

Breakthrough

Image Recognition Demo Toronto Deep Learning - http://deeplearning.cs.toronto.edu/

Speech Recognition

Deep Learning Vision Students Practitioner Not too late to be a world expert Not too complicated Practitioner Accurate enough to be used in practice Many read-to-use tools such as TensorFlow Many easy & simple programming languages such as Python

Activation function problem Deep Learning의 문제 Activation function problem Backpropagation과정과 연관 Weight initialization

Solving the XOR problem

Solving the XOR problem How can we get W & b from the training data?

Solving the XOR problem

Backpropagation w가 cost함수에 미치는 영향 w=? x Cost = ^y - y

Backpropagation: chain rule 활용

Backpropagation: chain rule 활용

Activation function: sigmoid ?

Deep network -> poor result

Vanishing gradient Gradient 값을 back propagate 시키게 되면 input layer 방향으로 진행될 수록 값이 미약해짐 ? Sigmoid function이 문제

Vanishing gradient: sigmoid function? 1 ReLU: Rectified Linear Unit max {0, z}

Performance

Activation Functions Leaky ReLU

Performance [Mishkim et al. 2015]

Weight Initialization

Weight Initialization Hinton et al. (2006) “A Fast Learning Algorithm for Deep Belief Nets” => Restricted Boltzmann Machine encoding decoding

RBM Deep Learning : pre-training step

RBM Deep Learning : fine tuning step

Weight Initialization Xavier/He initialization Makes sure the weights are “just right”, not too small, not too big Using the number of input (fan_in) and output (fan_out)

Avoiding overfitting Regularization Dropout Target function = cost +  𝑤 2 Dropout Learning 시에만 dropout Prediction 시에는 모든 노드 사용

Deep Network의 설계 Forward NN Convolutional NN Recurrent NN ??? NN

Convolutional NN

Convolutional NN

Convolutional NN 6

Convolutional NN

Recurrent NN For sequence data (or time series data) We understand the sentences based on the previous words + current word NN/CNN cannot learn the sequence data

Recurrent NN

Recurrent NN

Recurrent NN

Recurrent NN

RNN applications Language modeling Speech recognition Machine translation Conversation modeling Image/Video captioning Image/Music/Dance generation

RNN structures

RNN structures Training RNNs is very challenging !