Presentation is loading. Please wait.

Presentation is loading. Please wait.

일반물리 General Physics 6 장 운동량과 충돌.

Similar presentations


Presentation on theme: "일반물리 General Physics 6 장 운동량과 충돌."— Presentation transcript:

1 일반물리 General Physics 6 장 운동량과 충돌

2 6 장 운동량과 충돌 6.1 운동량과 충격량 운동량 선운동량(linear momentum) p 각운동량(angular momentum) l 선운동량 p = m v 선 운동량의 단위; 질량 ×속도 = kg × m/ s = kg m/s 선운동량의 x 축 성분 px = m vx 선운동량의 y 축 성분 py = m vy 뉴튼의 제2법칙은; 힘 F = ma = m = = Dt Dv m Dv Dp ∴ F Dt = Dp = m vf – m vi ; 충격량 – 운동량 정리 힘이 물체에 가하는 충격량은 물체의 운동량의 변화와 같다. 충격량

3 공의 질량 m = 50 g, 골프채를 떠날 때의 속도 = 44 m/s
F 충격량 =  F dt tf ti ti tf 공의 질량 m = 50 g, 골프채를 떠날 때의 속도 = 44 m/s 2 cm

4 운동량 보존의 법칙; 충돌 전의 운동량 = 충돌 후의 운동량
6.2 운동량의 보존 질량 m1, m2인 물체가 각각 속도 v1,v’2로 운동하며 충돌하였다. 충돌 후에 각각 속도 v’1, v’2 으로 운동한다. 이때 운동량 보존의 법칙 관계식은? 운동량 보존의 법칙; 충돌 전의 운동량 = 충돌 후의 운동량 m1v1 m2v2 m1v’1 m2v’2 충돌 전 충돌 후 충돌 전 운동량 pi = p1 + p2 = m1v1+m2v2 충돌 후 운동량 pf = p’1 + p’2 = m1v’1+m2v’2 운동량 보존의 법칙; 충돌전의 운동량 = 충돌후의 운동량 pi = pf  ∴ m1v1+m2v2 = m1v’1+m2v’2

5 예) 질량 900 [kg]인 자동차속도 20[m/s]로 달려와서 정지해있는 질량 1800[kg]인 자동차와 충돌하였다
예) 질량 900 [kg]인 자동차속도 20[m/s]로 달려와서 정지해있는 질량 1800[kg]인 자동차와 충돌하였다. 충돌후에 하나가 되어 속도 V로 운동한다. V는? m1 = 900 kg , v1 = 20 m/s m2 = 1800 kg , v2 = 0 m/s m1v1 m2v2 (m1+m2) V 충돌 전 충돌 후 충돌 전 운동량 pi = p1 + p2 = m1v1+m2v2 충돌 후 운동량 pf = p’1 + p’2 = m1v’1+m2v’2 ☞처음에 m2는 정지한 상태이므로, v2 =0, 충돌후에는 하나되어 운동하므로, v’1 = v’2 = V 운동량 보존의 법칙;

6 예)질량이 각각 2[kg],4[kg]인 물체가 각각 속도 8[m/s], 3[m/s]로 반대 방향에서 달려와서 충돌하였다
예)질량이 각각 2[kg],4[kg]인 물체가 각각 속도 8[m/s], 3[m/s]로 반대 방향에서 달려와서 충돌하였다. 충돌후에는 그림과 같이 각각 운동을 한다. 이때 질량 2[kg]인 물체의 속도가 2[m/s]일때, 질량이 4[kg]인 물체의 속도는? 충돌 전 충돌 후 2[kg],8[m/s] 4[kg],3[m/s] 2[kg],2[m/s] 4[kg],V[m/s] ▶운동방향이 우측방향이면 “+”, 좌측방향은 “-”로 둔다 충돌 전 운동량 충돌 후 운동량 운동량 보존의 법칙; 충돌전의 운동량 = 충돌후의 운동량 pi = pf 

7 예) 투척기에서 공의 질량 0. 15 [kg]인 공을 속도 36 [m/s]로 투척한다. 투척기의 질량은 50[kg]이다
투척구의 초기 운동량 pi = 0 공을 발사하면 공의 질량 m, 속도 v , 투척구의 질량 M, 속도 V 운동량 보존의 법칙; 충돌전의 운동량 = 충돌후의 운동량 pi = pf  ∴ 0 = m1v1 + MV  V = - m1v1 / M

8 예) 투척기에서 공의 질량 0. 15 [kg]인 공을 속도 36 [m/s]로 투척한다. 투척기의 질량은 50[kg]이다
충돌 전 충돌 후 V 36[m/s] ▶운동방향이 우측방향이면 “+”, 좌측방향은 “-”로 둔다 초기에 투척기와 공이 정지해있는 상태이므로; pi = 0 공을 발사하면 ; pf = 0.15[kg] × 36[ms]+50[kg] × V 운동량 보존의 법칙; 충돌전의 운동량 = 충돌후의 운동량 pi = pf  V = - m1v1 / M = × 36 / 50 [m/s] = [m/s]

9 6.3 충돌(collision) 충돌에는 다음의 3가지 경우가 있다. 모든 경우에 선운동량은 보존된다.
►탄성충돌(elastic collision) ; 충돌 전과 충돌 후의 운동에너지 보존 ►비탄성충돌 (inelastic collision) ; 충돌전과 후의 운동에너지 비보존 ►완전 비탄성충돌 ; 두 물체가 충돌해서 하나로 되어 운동. 운동에너지는 보존되지 않는다. 탄성충돌 충돌전 운동에너지 Ei = 충돌후 운동에너지 Ef 충돌전 선운동량 pi = 충돌후 선운동량 pf 비 탄성충돌, 완전비탄성 충돌 충돌전 운동에너지 Ei ≠ 충돌후 운동에너지 Ef 충돌전 선운동량 pi = 충돌후 선운동량 pf

10 ►완전 비탄성충돌의 예) 자동차가 충돌해서 하나로 되어 속도 V로 운동
m1 = 900 kg , v1 = 20 m/s m2 = 1800 kg , v2 = 0 m/s

11 탄성충돌 충돌 전 운동에너지 Ei = 충돌 후 운동에너지 Ef 충돌 전 선운동량 pi = 충돌 후 선운동량 pf
m1 , v1i m2 , v2i m1 , v1f m2 , v2f 충돌전 운동에너지 Ei = ½ m1v1i2 + ½ m2v2i 충돌전 선운동량 pi = m1v1i + m2v2i 충돌후 운동에너지 Ef = ½ m1v1f2 + ½ m2v2f 충돌후 선운동량 pf = m1v1f + m2v2f

12 m1( v1i - v1f ) = m2( v2f - v2i ) ( v1i + v1f ) = ( v2f + v2i )
운동방정식; Ei = Ef , pi = pf ∴ ½ m1v1i2 + ½ m2v2i2 = ½ m1v1i2 + ½ m2v2i2  m1( v1i2 –v1f2 ) = m2( v2f2 – v2i2 ) ∴ m1v1i + m2v2i = m1v1f + m2v2f  m1(v1i - v1f) = m2( v2f - v2i) m1( v1i - v1f ) ( v1i + v1f ) = m2( v2f - v2i ) ( v2f + v2i ) 탄성충돌의 운동방정식 정리 ½ m1v1i2 + ½ m2v2i2 = ½ m1v1i2 + ½ m2v2i2 ; 운동에너지 보존 m1v1i + m2v2i = m1v1f + m2v2f ; 선운동량 보존 m1( v1i - v1f ) = m2( v2f - v2i ) ( v1i + v1f ) = ( v2f + v2i )

13 M >> m  m/M ≈0 질량 m의 믈체가 정지해 있는 질량 M인 물체에 충돌한 경우의 문제 M m m1( v1i - v1f ) = m2( v2f - v2i )에서 m( v1i - v1f ) = M v2f  m/M ≈0 (m/M) ( v1i - v1f ) = v2f ≈ ∴  질량 M의 무거운 물체는 정지해 있고 질량 m의 가벼운 물체는 초기 속도로 반대방향으로 되튄다.

14 M >> m  m/M ≈0 질량 M의 믈체가 정지해 있는 질량 m인 물체에 충돌한 경우의 문제 M m m1( v1i - v1f ) = m2( v2f - v2i )에서 M( v1i - v1f ) = m v2f  m/M ≈ (m/M) v2f = ( v1i - v1f ) ≈0  ∴v1i ≈ v1f 그리고 ( v1i + v1f ) = ( v2f + v2i ) 관계식에서∴  질량 M의 무거운 물체는 초기 속도로 같은 방향으로 운동하고 정지해 있던 질량 m의 가벼운 물체는 질량 M의 초기 속도의 두 배로 질량 M과 같은 방향으로 운동한다.

15 예제) 질량 2[kg]으로 동일한 물체 A,B와 질량 1 kg 인 C가 있다
예제) 질량 2[kg]으로 동일한 물체 A,B와 질량 1 kg 인 C가 있다 C는 처음에 정지해 있고 A는 8[m/s] B는 2[m/s]로 운동하며 A와 B는 완전비탄성 충돌하였고, 다시 AB는 C와 완전 비탄성 충돌을 하였다 A의 최종속도와 운동에너지를 구하시오. A B C vAB vABC

16 운동량보존의 법칙; mAvA+mBvB = (mA+mB)vAB
C vAB vABC 운동량보존의 법칙; mAvA+mBvB = (mA+mB)vAB 운동량보존의 법칙; (mA+mB)vAB + mCvC= (mA+mB+ mC) vABC ► A의 초기에너지 = ► A의 최종에너지 =

17 ▶상기의 두개 공식은 탄성충돌인 경우에만 사용한다.
■ 탄성충돌에서 적용되는 중요한 2개의 공식 (외우자) 공식 1. m1( v1 – v’1 ) = m2( v’2 – v2 ) 공식 2. ( v1 + v’1 ) = ( v’2 + v2 ) ▶상기의 두개 공식은 탄성충돌인 경우에만 사용한다. m1v1 m2v2 m1v’1 m2v’2 충돌 전 충돌 후

18 하얀 공의 중심을 쳐서 빨간 공의 중심을 때렸다면, m1( v1i - v1f ) = m2( v2f - v2i ) 와 ( v1i + v1f ) = ( v2f + v2i ) 관계식에서 m1 = m2 이므로 ( v1i - v1f ) = v2f , ( v1i + v1f ) = v2f ∴ v1i = v2f , v1f = 0  하얀 공은 정지하고 빨간 공은 하얀 공의 초기 속도로 운동한다.

19 vi vi 하얀 공의 중심을 쳐서 빨간 공의 중심을 때렸다면  하얀 공은 정지하고 빨간 공은 하얀 공의 초기 속도로 운동한다  빨강 공은 정지하고 파랑 공은 빨강 공의 초기 속도로 운동한다  파랑 공은 정지하고 검은 빨간 공은 하얀 공의 초기 속도로 운동한다.

20 v v ► 문제에서, 총에너지는 ; 질량이 동일한 공이 각각 동일한 속도로 와서 탄성충돌하였다 결과는 ? v v v v ① ②
v v ► 문제에서, 총에너지는 ; 운동량은 ; ► 역학적 에너지와 운동량이 보존되는 경우는 ?

21 질량이 동일한 공이 각각 동일한 속도로 와서 탄성충돌하였다 결과는 ?
v v v v v v v v ① 총에너지는 ; 운동량은 ; ② 총에너지는 ; 5/2 mv2 운동량은 ; -3mv + 2mv = -mv ③ 총에너지는 ; 운동량은 ; ④ 총에너지는 ; 3/2 mv2 운동량은 ; -2mv + mv = -mv

22 예제) 질량 2 kg인 물체가 처음에 10 m/s의 속도로 운동하는 물체가 운동 마찰계수 0. 2인 면에서 정지하였다
예제) 질량 2 kg인 물체가 처음에 10 m/s의 속도로 운동하는 물체가 운동 마찰계수 0.2인 면에서 정지하였다. 이때 마찰면에서 물체가 정지할때까지 이동한 거리는 ? (단,중력가속도 g = 10 m/s2 임) ► 초기 총역학적에너지는? E = 위치에너지 + 운동에너지 ► 위치에너지는 = 0 ► 초기운동에너지 Ek = ½ × 2kg × (10m/s)2 = 100 J S ► 총역학적에너지가 마찰에의한 일로 모두 소모되면, 정지한다. ► 거리 S 를 이동하면, 마찰에의한 일은; 마찰력 × 이동거리 = ► 이동 거리 S ;

23 예제) 질량 2 kg으로 동일한 물체 A,B와 질량 1 kg 인 C가 있다
예제) 질량 2 kg으로 동일한 물체 A,B와 질량 1 kg 인 C가 있다. C는 처음에 정지해 있고 A는 8m/s B는 2m/s로 운동하며 A와 B는 완전비탄성 충돌하였고, 다시 AB는 C와 완전 비탄성 충돌을 하였다. A의 최종속도와 운동에너지를 구하시오. A B C vAB vABC 운동량보존의 법칙; ► 2kg × 8m/s + 2kg × 2m/s = 4 kg × vAB ► vAB = 5 m/s 운동량보존의 법칙; ► 20 kgm/s = 5kg × vABC ► vABC = 4 m/s ► A의 초기에너지 = ► A의 최종에너지 =

24 ► 마찰면에서의 마찰력 fB= mkmBg = 0.2 × 3 kg × 10 m/s2 = 6 N
예제) 질량이 2 kg인 A와 3kg인 B가 용수철에 의해 묶여져 있다가 각각 반대방향으로 튕겨져 나갔다. 이때 A의 속도는 9m/s이다. B는 운동 마찰계수가 0.2인 면을 지난다. B가 정지하는 위치를 구하시오. (단 g = 10 m/s2 임) A B 마찰이 없는 면 mk = 0.2 10m vB 9m/s ① vA 는 ? ► 운동량이 보존의 법칙을 적용; ► 초기운동량 = 0 (A와 B가 정지해 있었음) ► 나중운동량 = 0 (운동량보존의 법칙) ∴ 0 ② B 가 정지하는 위치는 ? ► 초기 B의 총역학적에너지는; ► 마찰면에서의 마찰력 fB= mkmBg = 0.2 × 3 kg × 10 m/s2 = 6 N ► 36J = mkmBg · S =

25 ② A 가 정지하는 위치는 ? ► 초기 A의 총역학적에너지는; ► 마찰면에서의 마찰력 fB= mkmAg = 0.2 × 2 kg × 10 m/s2 = 4 N ► 마찰면에서 10 m 이동하면, 소모에너지는 ; ► 이때 A의 에너지는; 81 J – 40 J = 51 J ③ 마찰면을 지났을 때 A의 속도는?


Download ppt "일반물리 General Physics 6 장 운동량과 충돌."

Similar presentations


Ads by Google