Download presentation
Presentation is loading. Please wait.
Published byAstrid Haupt Modified 5년 전
1
I. Gas Properties Boyle’s law 1660 pascal(Pa) bar (atm) torr (psi)
≡ 1 N/m2 10−5 9.8692×10−6 7.5006×10−3 145.04×10−6 1 bar 100,000 ≡ 106 dyn/cm2 750.06 14.504 1 at 98,066.50 735.56 14.223 1 atm 101,325 ≡ 1 atm 760 14.696 1 torr 1.3332×10−3 1.3158×10−3 ≡ 1 Torr; ≈ 1 mmHg 19.337×10−3 1 psi 6.894×103 68.948×10−3 68.046×10−3 51.715 ≡ 1 lbf/in2
2
Force Pressure = Area Units of Pressure 1 pascal (Pa) = 1 N/m2
Barometer Pressure = (force = mass x acceleration) Units of Pressure 1 pascal (Pa) = 1 N/m2 1 atm = 760 mmHg = 760 torr 1 atm = 101,325 Pa bar = 105 Pa psi = lb/in2 = Pa 5.2
3
I. Gas Properties Charle’s law 1787
4
I. Gas Properties Charles’s law, temperature and thermometer
By Guy-Lussac, 1802 1593 Galileo Galilei invented a rudimentary water thermometer in which, for the first time, allowed temperature variations to be measured. 1714, Gabriel Fahrenheit invented the first mercury thermometer, the modern thermometer. 1742, Anders Celsius (1701–1744) created Celsius temperature scale 1848, Lord William Thomson Kelvin developed the idea of absolute temperature, what is called the "Second Law of Thermodynamics", and developed the dynamical theory of heat.
5
I. Gas Properties Dalton’s law 1801 R= 8.314 472 J K-1 mol-1
Avogadro number of gas 1811 1865 Josef Loschmidt( ), using the new Kinetic Molecular Theory (KMT) calculated the number of molecules/cm3 = 2.6 x 1019 1910 Jean Perrin, by direct measurements of the mean square displacement and application of Einstein’s equation, using suspensions of particles of gamboge and of mastic of uniform size = 7.12 x 1023
6
1660년경의 역사 1660년 남인∙서인 간에 예론시비(禮論是非) 시작됨. 전라도 산간군(山間郡)에 대동법 실시.
1662년 현종 창덕궁으로 옮김. 고려조의 능침(陵寢)을 봉식(封植). 1671년 현종 경덕궁으로 옮김. 전국적으로 대기근. 경기˙충청도에서 민란 일어남. 1660년 영국 왕정(王政) 복고. 국왕 찰스 2세 즉위. 코펜하겐조약과 올리버조약 체결. 스웨덴이 열국과 강화, 발트해의 패권을 재확인, 프러시아에서의 폴란드 종주권 상실. 1661년 프랑스왕 루이 14세의 친정(親政) 실시. 콜베르 재무총감이 됨. 1662년 영국에서 통일령(統一令) 제정. 청교도(淸敎徒)의 성직자 등 추방. 영국왕립학회 창설. 1663년 남북 캐롤라이나 식민지 건설.
7
1787년경의 역사 1784년 이승훈이 연경 남천주당에서 그라몽신부로부터 영세를 받음.
1784년 이승훈이 연경 남천주당에서 그라몽신부로부터 영세를 받음. 1785년 한성에 천주교교회가 생김(진고개 김범우의 집). 해시계 간평일귀 혼개일구 등 제작. 1787년 프랑스함대 페루즈 일행 제주도를 측량, 울릉도에 접근. 1788년 서학관계 서적을 대량 불태움. 1792년 북경 주교 구베아가 교황 비오 6세에게 조선교회 창립을 보고. 정약용 기중기를 발명. 1784년 카트라이트가 역직기를 발명. 1785년 마리 앙투아네트 사건(~1786). 1786년 프로이센왕 프리드리히 빌헬름 2세 즉위(~1798). 북아메리카에서 시에즈의 반란. 1787년 프랑스 명사회(名士會) 열림. 러시아가 투르크와 개전(~1792). 오스트리아가 투르크와 개전(~1791). 1788년 미합중국 헌법 발효. 영국이 오스트레일리아에 시드니 식민지 건설. 1789년 프랑스혁명 일어남.
8
1811년경의 역사 1804년 순조의 친정시작, 1806년 전라도 영광 등 40여 군현에 흉년. 기아자 약 50여만명 발생.
1807년 황해안 대해일 1808년 북청,단천에서 민란 발생. 1811년 곡산 등 민란 일어남. 홍경래의 난 일어남 1813년 공충도(公忠道)를 다시 충청도로 개칭. 1814년 함경도 일대, 경상도 지방에 대홍수. 1804년 나폴레옹 법전 공포. 1805년 트라팔가르 해전에서 넬슨이 프랑스˙에스파냐 연합함대를 격파. 1806년 신성 로마제국(962~) 멸망 1807년 나폴레옹전쟁(~1814) 시작됨. 풀턴의 증기선 시험운전. 1811년 영국에서 러다이트운동(~1812). 베네수엘라˙파라과이˙에콰도르가 독립을 선언. 1812년 나폴레옹군, 러시아 원정. 미국, 독립전쟁 시작(~1814). 1814년 나폴레옹 퇴위. 루이 18세 국왕 즉위. 빈회의(~1815) 시작. 스티븐슨이 증기기관차 시운전.
9
Kinetic Molecular Theory of Gases
1. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume. d(N2,g) = g/L (273°C) d(N2,liq) = g/mL (-195.8°C) 2. Gas molecules are in constant motion in random directions. Collisions among molecules are perfectly elastic. 3. Gas molecules exert neither attractive nor repulsive forces on one another.(no interaction)
10
Collisions of Gas Particles
11
Collisions of Gas Particles
12
The gas molecules in the container are in random motion
13
압력과 기체분자 운동 운동량 변화 ∆p = mvx –(mvx) = 2mvx 분자의 왕복시간 ∆t = 2a/vx
f = ∆p/ ∆t= 2mvx/(2a/vx)= mvx2/a N개의 분자에 의해 면 A에 가해지는 압력 p = Σf/a2 = m(vx12 + vx vxN2)/a3 =Nmvx2/V pV=Nmvx2
14
압력과 기체분자 운동 공간 상에서 무작위로 움직이는 분자는 특별한 방향에 대한 선호도가 없을 것이므로
Gas Pressure in the Kinetic Theory 분자당 평균운동에너지
15
운동에너지와 온도 이상 기체방정식 기체에 열이 가해지면 기체의 내부에너지와 온도가 증가!
Mean Kinetic Energy per particle Boltzmann constant
16
기체분자운동이론 (Kinetic Molecular Theory for Gases)
p = gas pressure, V=volume = mean square velocity N = number of gas molecules n = mole number of gas molecules = N/NA NA = Avogadro’s number m = mass of the gas molecule M = molar mass of the gas molecule
17
실험관찰에 의하면 (Ideal Gas Equation)
pV = NkT = nRT N = number of molecules, k = Boltzmann constant, J K-1, n = number of moles = N/NA, R = gas constant, l atm mol-1 K-1 T = temperature, P = gas pressure, V = volume, NA = Avogadro’s number
18
Maxwell-Boltzmann Distribution for Molecular Speeds
u~ u+du 사이의 속도를 가진 분자들의 수 f(u) = speed distribution function, m = molecular mass, k = Boltzmann constant, T = temperature, u = speed
19
분자속도와 에너지 분포 (Molecular velocity and energy distribution)
슈테른(Otto Stern)의 분자속도 측정 노벨물리학상 수상자(1943, w/ Gerlach) Schematic diagram of a stern type experiment for determining the distribution of molecular velocities v ~ v+∆v 사이의 분자개수 ∆N측정가능!!
20
Molecular speed Distribution of N2 gas
Maxwell Boltzmann distribution of molecular speeds in nitrogen gas at two temperatures. The ordinate is the fractional number of molecules per unit speed interval in (km/s)-1.
21
Apparatus for studying molecular speed distribution
Chopper method gravitation method
22
The distribution of speeds
of three different gases at the same temperature The distribution of speeds for nitrogen gas molecules at three different temperatures
23
Chemistry in Action: Super Cold Atoms
Gaseous Rb Atoms 1.7 x 10-7 K Bose-Einstein Condensate
24
Gaseous Diffusion/Effusion
Diffusion of Ammonia and HCl Effusion enrichment of UF6
25
Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties. NH4Cl NH3 17 g/mol HCl 36 g/mol
26
Kinetic-Molecular Theory for Gaseous Behavior
Principal Issues (잠재적 문제점) Negligible Volume and No interaction Hold only at low P, high T; for dilute gases Elastic Collisions Only in Neutonian mechanics is the reverse of an event as likely as the event itself. In the real world you cannot “unscramble” eggs because of entropy effects resulting from large ensembles of molecules
27
Deviations from Ideal Behavior
1 mole of ideal gas Repulsive Forces pV = nRT n = pV RT = 1.0 Attractive Forces
28
Real Gas Effect of intermolecular forces on the pressure exerted by a gas. Has volume Has interaction(usually attractive)
29
Van der Waals equation nonideal gas } corrected pressure } corrected
Selected Values for a and b for the van der Waals Equation Gas a [(L2 · atm)/mol2] b [10-2 L/mol] He 2.370 Ne 0.211 1.71 Ar 1.34 3.22 Kr 2.32 3.98 Xe 4.19 2.66 H2 0.2444 2.661 N2 1.390 3.913 O2 1.360 3.183 CO2 3.592 4.267 CH4 2.25 4.28 CCl4 20.4 13.8 C2H2 4.390 5.136 Cl2 6.493 5.622 C4H10 14.47 12.26 C8H18 37.32 23.68 Van der Waals equation nonideal gas } corrected pressure } corrected volume
30
Distribution of Molecular Velocities
N molecules at equilibrium at T magnitude u of the velocity vector The fraction of molecules having simultaneously a velocity component between ux and ux + dux, uy and uy + duy, and uz and uz + duz is -. fraction of molecules with a speed between u and u + du
31
Velocity Distribution
The distribution of particle velocities by Maxwell & Boltzmann The most probable velocity The average velocity The root mean square velocity
Similar presentations