Microwave Devices - Microwave Passive Devices I - 3 2008 / 1 학기 서 광 석
Bottom side 전류가 dominant Attenuation (1) Attenuation R U V G R – conductor loss c=R/2Zo G – dielectric loss d=GZo/2 Total loss = c + d + r ( radiation loss ) 1. conductor loss top metal bottom metal x - edge에 많은 전류 flow - skin depth Skin depth Bottom side 전류가 dominant (top metal)
Attenuation (2) (GaAs MMIC) : Au, W/Au (high cost) Metal의 종류 ( Si IC ) : Al Cu (large ) ( RC time constant, delay ) (GaAs MMIC) : Au, W/Au (high cost) (largest , 안정성) (thick) 2. dielectric loss ( ) E1(air), E2 (dielectric) 의 모양이 전체가 air인 경우와 같다고 가정할 때 [Ref. Collin pp.153~155] * ceramic-loaded teflon : 30 GHz 이상에서 loss가 급격히 증가 (laser drilling for via) quartz for millimeter wave applications
Attenuation (3) 3. radiative loss radiation Ref. ”Handbook of Microwave Integrated Circuits” by R.K.Hoffman conductor–backed dielectric waveguide ( lowest mode : TMo with fc=0 ) leakage - Pradiation f 2 at f=fs : strong coupling for leakage ex) h=0.5mm, r=9.6 fs = 60 GHz h=0.1mm, GaAs MMIC fs ~ 300 GHz
Microstrip Discontinuity (1) Ref. 1. K.C Gupta 2. P.B Katehi et. al IEEE Trans.MTT p.1029 E, H의 연속성을 만족시키기 위해 higher order mode , surface mode, radiation mode등이 excite. 1. open discontinuity Vdc circuit V /4 Open end (bias circuit)
Microstrip Discontinuity (2) open radiation Coc Goc V radiation r Coc Coc Goc Freq. <full-wave analysis> Modified equivalent circuit C Coc , C, L, R = functions of w/h U Coc U U L R V Ref : K. C. Gupta, et al., “Microstrip Lines and Slotlines,” Chap. 3, pp. 182-183. V V
Microstrip Discontinuity (3) 2. gap Coupler에 응용 작은 C 필요 시 응용 <simple model> 3. bend current flow가 작은 영역 - capacitive U compensated bend Chamfered bend r w r>3 w d s Soptimum/d =0.52+0.65exp(-1.35w/h)
Microstrip Discontinuity (4) 4. other discontinuities U step in width T junction improved T junction w 0.3w 2w or 2h (longer) U 0.7w
Microwave Passive Elements – Resistor (1) Microwave Passive Elements ----- R , L , C, coplanar, transformer… Ref. “MMIC Design” chap. 3 1. Resistor - impedance matching Zo= 50 (precision) - bias resistor RG ~ 수백 (up to K) RG metal resistor (~50 : precision) t Au GaAs L W R = Rㅁ*L/W = (/t)* L/W precision을 위해서는 W , L density를 증가하기위해서는 , t
Microwave Passive Elements – Resistor (2) NiCr : 60 ~ 600 -cm ex) Ni0.2Cr0.8 , t= 900 Å : 180 -cm, Rㅁ=20 / (up to 40 / - industry standard) - (가열) electron beam evaporation TaN : 280 -cm (좀 더 정확한 저항 값 구현) - nitrogen 분위기에서 Ta 증착 (reactive sputtering) semiconductor resistor (bias resistor) I N -GaAs S.I. GaAs Linear 영역에서만 사용 V Rㅁ: 10 ~20% (부정확) ~500/ㅁ (large) E < 3kV/cm 가 되도록 저항 길이 L을 결정
Applications of Lumped Inductor ( I ) Power Amplifier Application ( I ) Conventional Amplifier Bandwidth Enhanced Amplifier Shunt peaking Bandwidth ↑ 인덕터 적용예(회로도 중심) 인덕터의 필요성, 기능(교수님 주신 논문) 서울대에서 했던 부분 첨가 동향 ( Ref : S. S. Mohan, et al., IEEE J. Solid- State Circuits, March 2000, p. 346~355)
Applications of Lumped Inductor ( II ) Power Amplifier Application ( II ) Bandwidth Enhanced Amplifier with shunt inductor L↑ L↑ ( Ref : S. S. Mohan, et al., IEEE J. Solid- State Circuits, March 2000, p. 346~355)
Applications of Lumped Inductor ( III ) Voltage Controlled Oscillator (5GHz) Q of inductor ↑ Phase Noise ↓ ( Ref : J. N. Burghartz, et al., IEEE J. Solid- State Circuits, Dec. 1998, p. 2028~2034)
Applications of Lumped Inductor ( IV ) Band Pass Filter (5.4GHz) Q of inductor ↑ Q of BPF ↑, Insertion loss ↓ ( Ref : J. N. Burghartz, et al., IEEE J. Solid- State Circuits, Dec. 1998, p. 2028~2034)
Microwave Passive Elements – Inductor (1) Wire-bonding Air-bridge to prevent metal shortage < spiral inductor > advanced inductor 구조 - Ferrite core를 사용하면 L 증가 (수백 MHz 에서는 Ferrite core 성질 잃음.) microwave 응용으로 Ferrite가 없는 air-gap inductor 사용 * spiral 에 비해 high L, small C * MEMS process로 제작 가능 (yield, cost problem) substrate gap for small C C
Microwave Passive Elements – Inductor (2) inductance 계산 Self-inductance (L,w: cm) Mutual-inductance w , s L s w 길이 L 6 m 10 m 2 m <MEMS process> 2.5 m <다층금속공정> - Si 공정 - advanced processes s w t w가 작으면 loss (t를 증가시켜 loss 감소 가능) Industry standard : t=3m , Au s/w=5 m /5 m, 10 m /10 m
Microwave Passive Elements – Inductor (3) inductor for Si RF-IC spiral metal track conductive substrate로 인해 Csub typical substrate 20 -cm (conductive) Csub Cground Si substrate Solutions (i) highly resistive substrate ~ 104 -cm availability , cost problem. (ii) inductor metal track 과 substrate 사이에 절연체 삽입 Csub
Microwave Passive Elements – Inductor (4) 절연체 SiO2 r ~ 4 polyimide r ~ 3.4 BCB r ~ 2.6 절연체 (Csub 감소) Si substrate substrate <다층 금속공정 응용> inductor의 layout 효과 - Si RF IC에서는 inductor의 구현이 동작 주파수를 제한. large inductance (길이 길어짐) large fresonant & Q 각 turn의 metal폭과 gap,core의 면적의 optimization에 의해 inductor의 Q값 최대화 – 실험 및 전자장 simulation
Microwave Passive Elements – Capacitor (1) 절연체 <MIM capacitor> - 작은 series 저항 Si DRAM에서 절연체 기술의 발전 : r 면적 줄임 (higher capacitance) SiO2 : r 4 Ta2O5 : r =20~25 Al2O3 : r =10 HfO2, ZrO2 : r ~ 25 (Ba0.5Sr0.5)TiO3 : r > 300 (현재) (future) * Ta2O5 : tan = 0.02, unstable with bottom electrode * (Ba0.5Sr0.5)TiO3 - sputtering /annealing (550C~800 C) 공정 사용 - 고온 열처리로 GaAs에서는 사용 못함 (thermal damage) - unstable with bottom electrode : difficult to control stoichiometry
Microwave Passive Elements – Capacitor (2) MIM capacitor U V M2 Rt Lt C G Cfringe Lb Rb M1 bottom metal M1 w1 M2 L1 ( air bridge
Microwave Passive Elements – Capacitor (3) QMIM - bottom metal에 의해 결정 Bottom metal - smooth surface를 위해 evaporation (0.5 ~ 0.8m Au) Top metal - electroplating (~3 m Au) QMIM f (3pF capacitor) ~100 ~50 ~10GHz 1/QMIM = 1/Qconductor + 1/Qdielectric CMIM QMIM , fresonant CMIM 최대값 – 동작 주파수와 chip size에 의해 제한, 20pF 이하 (MMIC) CMIM Csub substrate GND • • • Csub 에 의해 signal loss 발생 fresonant CMIM Csub
Microwave Passive Elements – Capacitor (4) MIM capacitor layout -- metal 폭의 변화에 의한 discontinuity 효과를 감소시켜주는 layout (정사각형 직사각형) ( M2 M1 ( Interdigital capacitor (0.05~1pF) Metal 두께 ~ 3 m 동일 metal로 형성 Precision capacitance Unit area capacitance ~0.3% of unit area capacitance of MIM
Substrate Integrated Waveguide ( I ) ( Ref : D. Deslandes and K. Wu, IEEE Trans. MTT, Feb. 2003, p. 593-596)
Substrate Integrated Waveguide ( II ) ( Ref : B. Liu, et al., IEEE MWCL, Jan. 2007, p. 22-24)