Fe-Fe3C 상태도.

Slides:



Advertisements
Similar presentations
학 습 목 표 1. 기체의 압력이 기체 분자의 운동 때문임을 알 수 있다. 2. 기체의 부피와 압력과의 관계를 설명할 수 있다. 3. 기체의 부피와 압력관계를 그리고 보일의 법칙을 이끌어 낼 수 있다.
Advertisements

목성에 대해서 서동우 박민수. 목성 목성은 태양계의 5 번째 궤도를 돌고 있습니다. 또 한 태양계에서 가장 큰 행성으로 지구의 약 11 배 크기이며, 지름이 약 14 만 3,000km 이다. 목성은 태양계의 5 번째 궤도를 돌고 있습니다. 또 한.
Ⅰ. 우주의 기원과 진화 3. 원자의 형성 원자의 구성 - 원자핵 (+) 와 전자 (-) - 전기적 중성 - 원소의 종류마다 원자핵의 질량과 전자의 개수가 다름.
1. 도형의 연결 상태 2. 꼭지점과 변으로 이루어진 도형 Ⅷ. 도형의 관찰 도형의 연결상태 연결상태가 같은 도형 단일폐곡선의 성질 연결상태가 같은 입체도형 뫼비우스의 띠.
과공석강의 미세조직 변화 상온에서는 과공석강의 미세조직은 퍼얼라이트 조직이 초석 세멘타이트에 의해 둘러 쌓인 형태를 나타내고 있으며, 이 때 초석 세멘타이트는 아공석강에서의 초석 페라이트와 마찬가지로 오스테나이트 조직의 결정립계를 따라 핵생성 되었으므로 오스테나이트 결정립.
문 제 1. 시험편에 압축하중을 가하여 생기는 오목자국의 지름을 측정하여 경도를 알아내는 시험은?
제 10장 2원 합금 상태도의 해설.
적분방법의 연속방정식으로부터 Q=AV 방정식을 도출하라.
(생각열기) 멘델레예프의 주기율표와 모즐리의 주기율표 에서 원소를 나열하는 기준은? ( )
외국인 사진.
원자 스펙트럼 1조 서우석 김도현 김종태.
차량용 교류발전기 alternator Byeong June MIN에 의해 창작된 Physics Lectures 은(는) 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 3.0 Unported 라이선스에 따라 이용할 수 있습니다.
투명 비누 만들기.
열처리 기초 학습내용 학습목표 ▐ 이번 차시의 주요 학습내용과 학습목표입니다. 1. Fe-Fe3C 평형 상태도
전기에 대해 알아보자 영화초등학교 조원석.
RS 및 D 플립플롭 RS Flip Flop 래치는 어떤 입력 레벨에 의해서 제어되는 데 플립플롭은 클록 입력이라고
금속을 용융하거나 분자간 거리로 가깝게 부착시키는 방법
질의 사항 Yield Criteria (1) 소재가 평면응력상태에 놓였을 때(σ3=0), 최대전단응력조건과 전단변형에너지 조건은σ1 – σ2 평면에서 각각 어떤 식으로 표시되는가? (2) σ1 =σ2인 등이축인장에서 σ = Kεn로 주어지는 재료의 네킹시 변형율을 구하라.
11장. 포인터 01_ 포인터의 기본 02_ 포인터와 Const.
Error Detection and Correction
멀티미디어 시스템 (아날로그 이미지,신호를 디지털로 변환 방법) 이름 : 김대진 학번 :
제 10장 2원 합금 상태도의 해설.
감압증류(vacuum distillation)
TiO2이용 친환경 소변기 3조 조동현 김동수 김낙천
상관함수 correlation function
(Phase Transformation)
Fe3C 평형 상태도.
별의 밝기와 거리[2] 밝다고 가까운 별은 아니야! 빛의 밝기와 거리와의 관계 별의 밝기 결정.
Ⅲ. 이 차 방 정 식 1. 이차방정식과 그 풀이 2. 근 의 공 식.
10강. JSP 본격적으로 살펴보기-II 스크립트릿, 선언, 표현식 지시자 주석 Lecturer Kim Myoung-Ho
Terminology 평형상태도 : 합금이나 화합물의 물질계가 열역학적으로 안정한 상태에 있을 때 이의 조성, 온도, 압력과 존재하는 상의 관계를 나타낸 것 상(相, phase) : 계 안에서 다른 부분과 명확한 경계로 구분되고 그 내부는 물리적, 화학적으로 균일하게 되어있는.
연소 반응의 활성화 에너지 연료가 연소되기 위해서는 활성화 에너지가 필요합니다.
(생각열기) 타이완의 소수 민족 요리중에는 달궈진 돌을 물에 넣어 끓 이는 해물탕이 있다. 돌을 넣는 이유는?
2조 식품생명공학과 조광국 배석재 윤성수 우홍배
태양, 지구의 에너지 창고 교과서 87p~.
뇌를 자극하는 Windows Server 장. 원격 접속 서버.
고분자 화학 4번째 시간.
식품에 존재하는 물 결합수(bound water): 탄수화물이나 단백질과 같은 식품의 구성성분과 단단히 결합되어 자유로운 이동이 불가능한 형태 자유수(free water): 식품의 조직 안에 물리적으로 갇혀 있는 상태로 자유로운 이동이 가능한 형태.
밀도 (1) 부피가 같아도 질량은 달라요 ! 밀도의 측정 밀도의 특징.
합집합과 교집합이란 무엇인가? 01 합집합 두 집합 A, B에 대하여 A에 속하거나 B에 속하는 모든 원소로 이루어진 집합을 A와 B의 합집합이라고 하며, 기호 A∪B로 나타낸다. A∪B ={x | x∈A 또는 x∈B}
위치 에너지(2) 들어 올리기만 해도 에너지가 생겨. 탄성력에 의한 위치 에너지.
생활 속의 밀도 (1) 뜨고 싶니? 내게 연락해 ! 물질의 뜨고 가라앉음 여러 가지 물질의 밀도.
보고서 #7 (기한: 6/2) 2개의 스택, stk1, stk2를 이용하여 큐를 구현하라.
식물의 광합성 식물은 어떻게 영양분을 만들까요? 김 수 기.
균형이진탐색트리 이진 탐색(binary search)과 이진 탐색 트리(binary search tree)와의 차이점
끓는점을 이용한 물질의 분리 (1) 열 받으면 누가 먼저 나올까? 증류.
미분방정식.
2장 변형률 변형률: 물체의 변형을 설명하고 나타내는 물리량 응력: 물체내의 내력을 설명하고 나타냄
1-5 용해도.
비열.
7장 전위이론 7.2 금속의 결정구조 7.4 인상전위와 나선전위 7.5 전위의 성질.
Chapter 1 단위, 물리량, 벡터.
덴마크의 Herrzsprung과 Russell에 의해 고안된 태양 부근 별들의 표면온도와 절대등급 사이의 관계를 조사한 결과 별들이 몇개의 무리로 분류된다는 사실을 알았다. 후에 이것이 그들의 이름자를 딴 H-R도가 되었으며, 별의 분류와 그 특징을 알아보는 중요한.
신소재열처리(제7강) 강원대학교 신소재공학과 담당교수 : 신순기.
문제: 길이 1. 5m의 봉을 두 번 인장하여 길이 3. 0m로 만들려고 한다 아! 변형(deformation)
1. 정투상법 정투상법 정투상도 (1) 정투상의 원리
물의 전기분해 진주중학교 3학년 주동욱.
광합성에 영향을 미치는 환경 요인 - 생각열기 – 지구 온난화 해결의 열쇠가 식물에 있다고 하는 이유는 무엇인가?
학습 주제 p 끓는점은 물질마다 다를까.
P 86.
분별증류 GROUP12 조만기 양나윤 김세인.
7장 원운동과 중력의 법칙.
상관계수.
기체상태와 기체분자 운동론!!!.
감압증류(vacuum distillation)
광물과 광물학.
스커트 원형 제도.
비열 학습 목표 비열이 무엇인지 설명할 수 있다. 2. 비열의 차이에 의해 나타나는 현상을 계산할 수 있다.
저온지구시스템화학 및 실험 Ch.6 용해도도 JYU.
신소재열처리(제4강) 강원대학교 신소재공학과 담당교수 : 신순기.
Presentation transcript:

Fe-Fe3C 상태도

■  Fe-Fe3C 상태도 와 상 강은 열처리를 통하여 매우 다양한 미세조직과 성질이 얻어지기 때문에 열처리변수의 적절한 조합에 의해서 우리가 원하는 미세조직과 성질을 얻을 수 있다. 여기서 최종적인 미세조직과 성질을 결정해주는 기본적인 열처리변수는 첫째로, 어느 온도로 가열할 것인가 ? 둘째로, 이 온도에서 얼마 동안 유지할 것인가 ? 셋째로, 냉각은 얼마나 빨리 할 것인가 ?   하는 등의 3가지가 있다. 이러한 변수들을 결정해 주기 위한 자료로서 매우 중요한 역할을 하는 것이 평형상태도(平衡狀態圖, equilibrium phase diagram)이다. 이 상태도는 특히 첫 번째 변수인 열처리온도를 결정하는 데에는 없어서는 안될 결정적인 자료가 된다.

상태도의 기본적인 의미 상태도란 여러 가지 조성의 합금을 용융상태로부터 응고되어 상온에 이르기까지 상태의 변화를 나타낸 그림을 말한다.  즉 합금의 성분비율과 온도에 따른 상태를 나타내는 그림으로서, 횡축에는 조성(%), 종축에는 온도(℃)로서 표시하고 있다.

Fe-Fe3C 상태도 와 상 순철은 910℃이하에서는 체심입방격자이고, 910℃ 이상1390℃까지는 면심입방격자이다. 여기에 탄소원자가 함유되면 두가지의 변화가 나타난다. 즉 변태온도가 낮아지고 변태가 단일온도에서 일어나는 것이 아니라 어느 온도범위에 걸쳐서 일어나게 된다. 이러한 내용이 그림 2.1에 잘 나타나 있다. 엄격하게 말해서 시멘타이트(Fe3C)로 불리우는 금속간화합물은 평형상이 아니기 때문에 이 상태도는 엄밀하게 말하면 평형상태도가 아니다. 어떤 조건하에서 시멘타이트는 더욱 안정한 상인 철과 흑연으로 분해될 수 있다.

상(相, phase)이라는 것은 물리적, 화학적 그리고 결정학적으로 균일한 부분을 말하는 것으로, 이것은 뚜렷한 계면에 의해서 합금의 다른 부분과 구분된다. Fe-Fe3C 상태도에 나타나는 고상의 종류에는 4가지가 있다. 즉, α페라이트(ferrite), 오스테나이트(austenite), 시멘타이트 및 δ 페라이트 등이다. 이 각각의 상들을 구체적으로 나타내면 다음과 같다. 그러나 Fe3C는 한번 형성되기만 하며 실질적으로 매우 안정하므로 평형상으로 간주된다. 이러한 이유로 인해서 그림의 상태도는 준 안정 상태도이다.

Fe-C상태도 (실선:Fe-Fe3C 상태도, 점선:Fe-C상태도)

◆ Fe-Fe3C 상태도의 해설 탄소는 철과 화합하여 시멘타이트(Fe3C)의 형태로 되는 경우와 또는 탄소單體의 흑연(黑鉛, graphite)으로 되는 경우가 있다. 강의 경우는 주로 시멘타이트의 형태로 존재하지만 주철에서는 흑연과 시멘타이트의 두가지 형태가 나타난다. 보통 시멘타이트는 고온으로 가열하면 철과 흑연으로 분해되므로 준 안정상이라고 할 수 있고, 오히려 흑연이 안정상으로 간주된다. 그림 중에서 실선이 Fe-Fe3C계 상태도를 나타내고, 점선이 철-흑연계 상태도를 나타내는 것이다. 철-흑연계 상태도는 주철에서 주로 고려되는 것이므로 여기서는 Fe-Fe3C 상태도에 대하여만 설명하고자 한다.

그림 Fe-Fe3C계 평형상태도와 변형조직도

A`   순철의 용융점 (1538℃) N 순철의 A4 변태점, δ철     γ철 (1394℃) AB δ페라이트의 액상선(응고가 시작되는 온도) AH δ페라이트의 고상선(응고가 종료되는 온도) HN δ페라이트가 오스테나이트로 변태하기 시작하는 온도 JN δ페라이트가 오스테나이트로의 변태를 종료하는 온도 HJB 포정선(1495℃, J점 ; 0.17 0.53%C), 이 온도에서 δ페라이트(H) + 액상(B)   오스테나이트(J)의 포정반응이 일어난다. BC 오스테나이트의 액상선 JE 오스테나이트의 고상선 CD 시멘타이트의 액상선 ECF 공정선, 이 온도에서 액상(C)    오스테나이트(E) + Fe3C(F)의 공정반응에 의해서 액상으로부터 오스테나이트와 시멘타이트가 동시에 정출한다. C 공정점(1148℃, 4.3%C), 이 조성의 합금은 공정조직인 레데뷰라이트 (ledeburite)로 된다. 오스테나이트에 대한 탄소의 최대고용한(1148℃, 2.11%C), 이 조성으로 강과 주철을 구분하고 있다. ES 오스테나이트로부터 시멘타이트가 석출하기 시작하는 온도를 나타낸다. Acm선이라고 부른다. G 순철의 A3 변태점, γ철        α철(912℃) GS 오스테나이트로부터 페라이트가 석출하기 시작하는 온도. A3선이라고 부른다. S 공석점 (0.77%C, 727℃) PSK 공석선, 이 온도에서 오스테나이트(S)   페라이트(P) + Fe3C(K)의 반응에 의해 펄라이트를 만든다. A1선(727℃)이라고 부른다. GP 오스테나이트로부터 페라이트로의 변태가 종료되는 온도. P α철에 고용하는 탄소의 최대고용도(727℃에서 0.02%C)

α 페라이트 α철에 탄소가 함유되어 있는 고용체를 α 페라이트 또는 단순히 페라이트라고 부르며, BCC 결정구조를 가지고 있다. 상태도에서 나타내듯이 α 페라이트의 최대탄소고용도는 723℃에서 0.02%이므로 페라이트에 고용할 수 있는 탄소량은 매우 적은 것을 알 수 있다. 또한 α 페라이트의 탄소고용도는 온도가 내려감에 따라서 감소하여 0℃에서 약 0.008%정도이다.

탄소원자는 철원자에 비해서 비교적 원자크기가 작으므로 철의 결정격자내의 침입형자리(interstitial site)에 위치한다. 침입형자리는 4면체 틈자리(tetrahedral site)와 8면체 틈자리(octahedral site)의 두 종류 가 있는데, BCC인 α 페라이트에서는 4면체 틈자리의 크기가 크고, 그 침입형 자리에 들어갈 수 있는 구의 최대반경은 0.35Å이다.

따라서 0.77Å의 반경크기를 갖는 탄소원자가 이 침입형자리에 들어가게 되면 탄소원자의 크기가 침입형자리보다 상대적으로 매우 크기 때문에 격자변형을 일으키게 된다. 이것이 α 페라이트내의 탄소고용도를 적게 하는 중요한 이유이다.

오스테나이트 γ철에 탄소가 고용되어 있는 고용체를 오스테나이트(austenite)라고 하며, FCC 결정구조를 가지고 있다. 탄소고용도는 1148℃에서 2.08%로 최대이며, 온도가 내려감에 따라서 감소하여 723℃에서 0.8%로 된다. 따라서 탄소고용도는 α 페라이트보다 매우 크다. 또한 α 페라이트에서와 마찬가지로 오스테나이트중의 탄소는 침입형자리에 위치하는데, FCC의 8면체 틈자리의 크기가 8면체 틈자리 보다 크고, 8면체 틈자리에 들어갈 수 있는 구의 최대반경은 0.51Å이다.

그러므로 0.77Å의 반경을 갖는 탄소원자가 8면체틈 자리에 들어가면 α 페라이트에서와 마찬가지로 격자변형을 일으키게 되지만, 그 변형정도는 α 페라이트보다는 작다. 이것이 오스테나이트의 탄소고용도가 α 페라이트보다 크게 되는 중요한 이유이기도 하다. 한편 이와 같이 오스테나이트와 α 페라이트의 탄소고용도가 차이나기 때문에 대부분의 강을 경화열처리하는데 있어서의 중요한 근거가 되는 것이다.

시멘타이트 철탄화물(Fe3C)인 시멘타이트는 고용체라기 보다는 금속간 화합물로서, 6.67%의 탄소를 함유하고 있다. 결정구조는 단위격자당 12개의 Fe원자와 4개의 C원자를 가지는 사방정(orthorhombic)이고, 매우 硬하고 취약한 성질을 가지고 있다.