Specialized Graduate School of Climate Change,

Slides:



Advertisements
Similar presentations
하 영 석 계명대학교 교수 前 한국해운물류학회 회장 포항 영일만항의 비전과 발전전략.
Advertisements

Energy Demand and Supply Outlook 2040 APERC. Business as Usual Scenario 아시아 태평양 지역의 총 에너지 수요는 2040 년까지 50% 증가할 것으로 예상 에너지 수요의 증가는 수송부문의 수요 증가에 기인. 수송용.
사회과학부 우영재. 1.What’s Oil Sand? 2.Oil Sand Process 3.Economic Model -Externality & Benefit/cost Analysis 4.Economic Factor in Oil sand Process.
한국 에너지산업 위기인가 ? 기회인가 ? SK 에너지㈜ 대표이사부회장 신 헌 철신 헌 철.
국민이 바라는 미래 정부의 기 능과 거버넌스 : 환경변화, 정부기능, 역량 문명재 언더우드특훈교수 연세대학교 행정학과 2015 년 9 월 4 일.
PART 8 미래 주요 도전과제 기후 변화와 지속가능 발전 대기 중의 이산화탄소의 양이 지속적으로 늘 어남. 산업혁명 이전 280ppm 이던 대기 중 이 산화탄소의 양이 2013 년 400ppm 을 넘어섬 2020 년 까지 지구온도 상승을 2 도.
순서 삼성 SDI 는 기후변화와 에너지 EnMS 구축사례 2 삼성 SDI 는 Smart solution for a Green world ( 親환경 에너지 솔루션 기업 ) Smart solution for a Green world ( 親환경 에너지 솔루션 기업 ) 3.
Graphene ( 그래핀 ). Carbon nanotube( 탄소 나노튜브 ) Multi-walled carbon nanotube.
한국전력공사 계통계획처 우리나라 전력산업의 과거와 미래 Think Together, Go Together.
Studies in Contemporary Global Issues (week3) Kim, Hyunjung
Service Operations Management
경영회계원리 부산외국어대학교 2009학년도 1학기 Think Globally Act Locally 안녕하십니까 ?
1. IT 환경 변화 Ⅳ. 프로젝트 추진방안 기업이 당면한 다양한 문제 해결을 위해서 문제를 효과적으로 해결할 수 있는 IT 시스템이 개발되었으며, 이는 기업 내 데이터 발생의 원인으로 작용하고 있음. IT 환경 변화는 단순 데이터가 아닌 다양한 형태의 데이터를 급격하게.
No More 5번 국도?.
From the Blue Sky To the Blue Ocean
목차 국가 R&D 기획ㆍ조정ㆍ평가 체계 국가 R&D 사업의 조사ㆍ분석 국가 R&D 예산 조정ㆍ배분 국가 R&D사업의 평가
환경관리공단 최경식 팀장 저탄소 녹색성장 1.
울산환경운동연합 기후변화와 재생 에너지 -햇빛과 바람으로 탈출하라! 김형근 울산환경운동연합 기획실장.
로컬 푸드에 이어 로컬 에너지 시대로! 중앙집중형 지역자립형 발전소 수명 연장 분산화된 재생가능에너지 발전 의사소통과 통제향상
중소기업 R&D, 무엇이 문제인가? 한국과학기술정보연구원 산업정보분석실 책임연구원 박 영 서.
세계에너지산업 동향 및 시사점 (기후변화 및 미국정책을 중심으로] 신재생에너지 사절단 발표자료
아시아의 평화문제-아시아 평화를 위한 한일관계 Korea-Japan Relation for Asian Peace
곡물파동 : 원인과 전망 농업정책학회 정책세미나 양승룡 교수 고려대학교 식품자원경제학과.
Korea and the World (6) Global Warming & Climate Change
Journals & Conferences
Evaluation of Green roofs from the Water-Energy-Food Nexus perspective
The 2017 International Radon Symposium™
신기술 세미나 제안서 발표 신원호.
성장에 관한 사실 경기변동이 중심인 단기 및 중기의 산출물 결정에 대한 분석에서 성장이 지배하는 장기의 산출물 결정에 대한 분석으로 초점을 이동 성장은 시간에 따른 총산출물의 steady한 증가를 의미한다. © 2006 Prentice Hall Business Publishing.
Ⅳ.3 3대 효율 프로그램과 리베이트 관계  신제품 개발 고효율 인증제도 효율등급 표시제도 (최저효율제도) 장려금지원제도
에너지 수요 변화 – 세계 경제 성장과 에너지 수요 증가
한반도 정세와 동북아 안보.
제 35 장 인플레이션과 실업의 상충관계.
UCC 평가 & Energy 지리학과 장현정.
해양플랜트산업의 전망과 국산기자재 개발 현대중공업 해양사업본부
일본의 환경과 에너지 1970년대에서 2021년까지 김찬재.
지속가능한 전력시스템과 천연가스 조영탁 (한밭대학교 경제학과).
Heat Recovery Steam Generator
4 장: 에너지, 화학, 그리고 사회 에너지(열과 일, 보존과 소멸, 근원) 활성화 에너지 석탄 석유 산소로 처리된 가솔린
기후변화 과학 대기중 온실가스 농도 증가 지구평균 온도 및 해수면 상승
독일의 재생가능에너지 정책 2008년 9월 27일 환경운동연합 염광희
과거 제품의 신뢰성과 사용자의 안전성 문제에서, 지구 환경에 미치는 영향을 고려하는 단계로 변화
탄소배출권 가격의 이해 학기 양승룡 교수 식품자원경제학과.
BPR 추진전략 및 사례 1.
국가우주개발 미래 비전 수립 김 병 수 한국과학기술기획평가원 전략협력실
신재생에너지발전 사업 및 정책동향 이 창 호.
제 14 장 거시경제학의 개관 PowerPoint® Slides by Can Erbil
1 도시차원의 쇠퇴실태와 경향 Trends and Features of Urban Decline in Korea
아주대학교 경제학과, 에너지시스템학과, 금융공학협동과정 교수 김수덕
PART 8 미래 주요 도전과제
5-3. 화석 연료의 이용 세계 에너지 소비량
기후변화협약 제9차 당사국총회 결과와 산업계 대응 과제
태양광발전 원리 Solar Followers.
제 15 장 거시경제의 측정 PowerPoint® Slides by Can Erbil
1. 미래학 소개 6.
에너지산업의 장기전망과 에너지정책의 새로운 패러다임
STEPI 제 214회 과학기술정책포럼 류 지 철 에너지경제연구원
Recommendations for Policy Options
Energy Grid 와 태양열 에너지 부산대학교 기계공학과 강율호.
21세기 과학기술정책과제를 위한 제안 - 정책학적 관점에서의 반성과 개선방향 -
신재생 에너지
Presented by An Min-ho ( )
When are technologies disruptive? A demand-based view of the emergence
대기 CO2 감축(저감) 에너지 소비 절약(CO2 생산 감소)
제16대 총장 취 임 사 신 성 철 총장 Inaugural Address of the 16th President
Alternative proposals
Hongik Univ. Software Engineering Laboratory Jin Hyub Lee
Economics and management in Warsaw
Artificial intelligence, automation, and the economy
에너지 위기 대처 방안 없는 국가에너지기본계획과 미래에너지비전
Presentation transcript:

Specialized Graduate School of Climate Change, [International Conference for Establishment of National Energy Vision] Sustainable Energy Scenario for Power Sector of Korea 한국의 전력부문 지속가능 에너지 시나리오 Nyun-Bae Park Specialized Graduate School of Climate Change, Sejong University 8 June 2011 정부의 제1차 국가에너지기본계획(국무총리실 외. 2008)과 제4, 5차 전력수급기본계획(지식경제부 2008, 2010)을 바탕으로 장기 에너지 시스템 분석모형인 LEAP(Long-range Energy Alternatives Planning system) 모형을 이용하여 2050년까지 발전 부문에서 재생가능 에너지의 확대를 통한 에너지 전환 시나리오에 대하여 정량적인 분석을 하였다. 기준 시나리오, 정부 정책 시나리오, 지속가능 사회 시나리오에 대한 발전량 및 설비 구성, 수입의존도, 연료 다양성 등 에너지 시스템에 대해 분석하는 한편, 온실가스, 대기오염물질, 온배수, 토지이용 등 환경영향을 검토하고, 시나리오별 총 비용을 분석하였다. 본 연구의 의의는 영국, 독일, 미국, 일본 등 선진국에서 전력 장기 시나리오들을 검토하는 한편, 국내 발전 부문 재생가능 에너지 전환의 가능성과 의미에 대해 화두를 던지고자 함이다.

Contents Background and Purpose GHG Reduction Option in Energy Sector Methodology and Scope Scenarios Results : Electric System, Environment, Economy Conclusion

Background and Purpose Many studies about GHG reduction and RE (Renewable Energy) expansion by 2050 in global and national level (UK, Germany, USA, Japan etc.) For Climate change mitigation, Energy security, Green jobs and Industrial competitiveness etc. Energy Master Plan(‘08), GHG Reduction Target(’09), 5th Electricity Plan(’10) 1990~2008. Electricity consumption per capita 3.6 times. GHG emissions of generation 5.5 times 2008. GDP-PPP, World 12th. Primary Energy, World 10th, CO2 (fuel emission) World 10th GHG emissions Reduction Target : 30% lower than BAU by 2020 Generation ’08 ’24 (5th Electricity) ’30 (1st Energy) Nuclear 35.7% (World 4th) 48.5% 59% New and RE 1.0% (OECD 30th) 8.9% - Domestic technological potential of RE is 7.3 times of Primary Energy in 2008 (KEMCO 2008). Supply from RE in 2008 is less than 0.1 % of technological potential. Scenario Analysis for Renewables Transition in Power Sector by 2050 (Energy, Environment and Economic Analysis) Considering technologies’ lifespan (average about 30 years) 장기 분석 필요성 : 전력 설비의 평균 수명 30년 이상, 최소 1회 이상 설비 대체를 고려 정부, ’20년까지 GHG 총배출량 BAU 대비 -30% (’05년 대비 -4%) 목표 수립 (2009.11) 2050년까지 에너지자립도 100% (녹색위 2009) : 용어 문제 신∙재생 비중(30%) + 원자력 비중(적정%) + 화석에너지비중*자주개발률(100%) 발전사, ‘22년까지 발전량 대비 신ㆍ재생 10% (신ㆍ재생에너지 의무할당제(RPS) 공청회안, 2010.3) 기술적 잠재량 < 가용 잠재량 < 부존 잠재량 기술적 잠재량 : 현재의 기술 수준으로 산출될 수 있는 최종 에너지의 양. 기기의 시스템 효율 등을 적용

Electricity trend and plan of Korea Source : KEEI, KPX Nuclear Bituminous Anthracite LNG Oil Pumped New & RE Group Totlal Capacity (MW, %) 2008 17,716 22,580 1,125 17,969 5,340 3,900 1,900 835 71,364 (24.8) (31.6) (1.6) (25.2) (7.5) (5.5) (2.7) (1.2) (100.0) 2022 32,916 28,820 600 23,062 3,591 4,060 4,700 3,142 100,891 (4th) (32.6) (28.6) (0.6) (22.9) (3.6) (4.0) (4.7) (3.1) 34,416 30,320 23,517 4,108 7,425 4,846 110,457 (5th) (31.2) (27.5) (1.0) (21.3) (3.7) (4.3) (6.7) (4.4) Generation (GWh, %) 144,756 161,984 5,589 92,316 8,110 1,710 6,016 5,303 425,783 (34.0) (38.0) (1.3) (21.7) (1.9) (0.4) (1.4) 265,180 195,646 3,176 34,132 887 7,112 25,844 21,320 553,297 (47.9) (35.4) (6.2) (0.2) (3.9) 282,314 196,553 62,170 2,915 7,125 47,892 - 598,968 (47.1) (32.8) (10.4) (0.5) (8.0) 문제제기 포함 우리나라 온실가스 배출량 현황 ’07년 국가 GHG 총 배출량 : ’90년 대비 103% 증가 ’07년 연료연소로 인한 CO2 배출량 ’90년 대비 113% 증가 연료연소 중 전환 부문의 비중 계속 증가 : 16%(’90) → 37%(‘07) 전환 부문 배출량의 대부분이 전력 생산으로 기인 : 약 90%(‘07) 1인당 전력 소비량 및 전력 배출원단위 증가 ’07년 ’90년 대비 각각 3.4, 1.4배 전력 소비는 GDP 보다 더 빠르게 증가하고 있음 ⇒ 에너지 전환 부문, 특히 전력부문 배출량 저감 필요성 증대 Source : MKE 2008, 2010

GHG Reduction Option in Energy Sector To limit below 2℃ increase against pre-industrialization, Stabilizing CO2eq. to 450 ppm and Reducing CO2 50% Globally by 2050 against 2000 (IPCC 2007; UNDP 2007) GHG Reduction Option in Energy Sector : Efficiency, Fuel Substitution, Renewable Energy, Nuclear, Carbon Capture and Storage (CCS) etc. (IEA 2010; IPCC 2007; Mckinsey 2009; Pacala & Socolow 2004) Power Sector : End-use Efficiency Improvement, Transmission and Distribution Loss Decrease, Low Carbon Generation Technology, Carbon Sequestration (Ekins 2004; Hadley & Short 2001; METI 2005) Debate about the role of Nuclear, CCS and RE in terms of GHG Reduction Nuclear and CCS are very important (ECF 2010; ECN 2007; EPRI 2007; Eurelectric 2010; IEA 2010; IEP 2009; METI 2005 etc.) Efficiency Improvement, RE, CHP (LNG) without Additional Nuclear Power (FoE 2006; Greenpeace 2009; Heaps et al. 2009; Sawin et al. 2009; WWF 2009) Requesting USA to switch to 100% Renewable Electricity (Al Gore 2008) Zero Carbon Society is not a technological problem but a political and economic problem (Eilperin 2008). 온실가스 저감 기여 : 효율 개선 > 재생가능 에너지 > CCS > 원자력 현재 우리나라 신∙재생에너지 의무할당제(RPS) 공청회 자료(2010.3) : 총 발전량 대비 신∙재생 발전 비율을 2022년까지 10% (우리나라 2008년 대수력 포함 신∙재생 발전량 비중 1.00%) 앨 고어. 2018년까지 미국의 전력 100%를 재생가능 에너지로 공급하는 과제에 착수할 것을 요구(Post Carbon Institute 2008) WWF (2006, 2007, 2009)은 전세계적으로 원자력의 추가 건설 없이 재생가능 에너지와 CCS를 통해 온실가스 저감 가능. 영국이 2030년까지 원자력의 추가 건설 없이, 재생가능 에너지와 천연가스, CHP를 통해 전력수급 가능 (WWW 2006; FOE 2006) METI 2005 : 재생가능 에너지(수요 관리 포함)와 원자력(핵연료 재처리)을 통해 제로 배출량, 100% 자급 가능

OECD Countries’ Renewable Electricity Share Source : IEA. 2009, 2010. Energy Balances of OECD Countries (modification) Korea’s renewable electricity ranking is 30th among OECD countries. Hydro is dominant. 6 European countries declared to nuclear phase-out and their RE’s share increased.

Status of Nuclear Power (May 2011) ACA. Nuclear Weapons: Who Has What at a Glance. http://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat (2011.5.2 접속) 원전보유국은 원전 설비용량 순임. 원전 미보유국은 1차 에너지 소비량 순임 오스트리아 (’78, 국민투표), 스웨덴(’80, 국민투표), 이탈리아(’87, 국민투표), 스페인(’83, 사회당), 벨기에(’99, 사회당, 자유당, 녹색당 연립정부 폐쇄 합의. ’03. 상원 승인), 독일(’00. 사민당, 녹색당 연립정부 폐쇄 합의. ’10. 수명연장) 네덜란드 (’94 의회 표결. ’05. 보수연정, 핵폐기를 포기)

Methodology and Scope Contents Method Scope Data Model : LEAP (Long-range Energy Alternatives Planning System) Bottom-up, Scenario based, Accounting Model for Energy / GHG Scenario : Forecasting and Backcasting approach Scope Time : 2008 (reference year) ~ 2050 Geological : South Korea (Domestic Electricity Market) Power Supply in National Energy Supply and Demand System Assessment : Power System, Environmental, Economic Data Plan & Long-term Key Assumption : National Energy Master Plan, 4th & 5th Electricity Plan etc. Statistics : Energy Statistics (MKE & KEEI), Statistics of Electric Power (KEPCO) etc. Tech Characteristics : KEMCO, KPX, IEA, US EPRI, UK ERC etc. Energy Price, Tech Cost Outlook : IEA, DOE/EIA etc. LEAP : 에너지 계획에 따른 변화를 평가하는 모형

Storyline (Power Supply Mix and Demand Management) Scenarios Scenario Storyline (Power Supply Mix and Demand Management) 1 Forecasting Baseline (BL) 4th Basic Plan for Long-term Electricity Supply and Demand (MKE 2008) - Nuclear power : 20 plants (2008) → 32 plants (2022) 2 Governmental Policy (GP) 5th Basic Plan for Long-term Electricity Supply and Demand (MKE 2010) - Electricity Demand Projection in 5th Plan increases more than in 4th Plan - Nuclear power : 20 plants (2008) → 34 plants (2024) - Renewables Deployment in 5th Plan is 3 times higher than 4th Plan 3 Backcasting Sustainable Society (SS) Reducing GHG Emission in Power 80% against 2008 by 2050 Renewables Transition under the Domestic RE Potential Only 8 Nuclear Plants under Construction are accepted.* No Nuclear Power Plants’ License Renewal (Except Gori 1st, 10 years extension (2007)) Demand Side Management Improvement T&D Loss Rate Decrease 건설중 원전 8기 현황 : 전력거래소. 2011.2. 발전소 건설사업 추진현황 지속가능 사회 시나리오의 수요 관리는 기준 시나리오 대비 ’11~’20년, 30%, ’21~’30년, 40%, ’31~’50년, 50% 개선 * 8 Nuclear Plants under Construction : New Gori 1(’11.2), 2(’11.12), 3(’13), 4(’14); New Wolsung 1(’12), 2(’13); New Uljin 1(’16), 2(’17)

Electricity Consumption per capita Trend and Outlook Source : IEA 2010, EIA 2011 Korea’s electricity consumption per capita is higher than Germany, UK and Japan’s (higher income). Future growth rate of electricity consumption per capita in Korea is less than that of GDP per capita. But electricity consumption of 2050 in SS is higher than today, though less than in BL and GP.

Electricity Generation by Scenario Nuclear (LWR) Bituminous Coal Nuclear (HWR) LNG CC PV Offshore Wind Onshore Wind Baseline Scenario Gov’t Policy Scenario Sustainable Society Scenario In recent gov’t plan, future electricity consumption will increase more. SS : Demand Reduction, Nuclear Phase-out, LNG CHP (Bridge Technology), RE

Generation, Capacity and Fuel Diversity In 2050, Numbers of Nuclear Power Plants : BL 55, GP 49, SS 7 (2057, Nuclear Free) In 2050, Renewables Capacity in Sustainable Society Scenario About 10 million of PV (10 KW), 80 thousands of Wind Turbine (1.5MW), 2 hundreds of 8 MW Geothermal SS Scenario is less vulnerable to Energy Price Shock owing to fuel diversity and lower import dependency

GHG Emissions by Scenario : Contribution of Reduction Option 87% reduction by 2050 against 2008 Loss Decrease PV Wind Geothermal Biomass Small Hydro DSM 미래 : 감축 효과 기여순 배출원단위 > 전력원단위 > 인구 감소 > 전환 효율 개선 순 Demand Side Management and RE are important for emission reduction. In this research, RE transition is the most dominant factor among reduction options.

Other Environmental Impact from Power Sector 2005 2008 2020 2050 Index (2005=1) BL GP SS SO2 1.00 1.19 1.25 1.43 0.95 1.22 1.09 0.02 NOx 1.41 1.60 0.10 NMVOCx 1.45 1.62 1.31 0.22 CO 1.26 1.47 1.66 1.32 1.34 0.23 Thermal Effluent 1.13 1.50 1.24 2.34 2.13 0.29 Land Use 1.23 1.78 1.90 1.86 2.66 2.74 3.59 BL and GP Scenario : Air Pollution and Thermal Effluent get worse by expansion of Nuclear and Bituminous Coal Plant SS Scenario : Land use area increases owing to Renewables (PV, Onshore Wind etc.) Land required in SS by 2050 is about 2% of national area (about 12% except forest and farmland)

Economic Analysis (Cost) Differential Cost between GP and SS 2009~2050. Cumulative Discounted Total Cost Ratio (Excluding external cost) : SS/BL=1.2 (Sensitivity Analysis 1.08~.131), SS/GP=1.1 (cf. GDP about 3 times) The Dominant Item : Fuel Cost. LNG plants Cost of Generating Electricity (Won/kWh, Real) : 2008. 56 Won/kWh (Calculated) Average Real Cost (2009~2050) : BL, 64 Won, GP, 68 Won, SS, 89 Won

Electricity Consumption Summary In terms of energy security, environment and economy, Sustainable Society Scenario is desirable and economically affordable. 2008=1 BL (2050) GP (2050) SS (2050) Energy Electricity Consumption 1.00 1.78 1.84 1.52 Nuclear Generation 2.92 2.67 0.42 RE Generation 6.99 25.39 121.16 Fuel Diversity 0.85 1.08 1.50 Environ ment GHG 0.99 0.13 SO2 1.02 0.91 0.02 NOx 0.08 0.01 NMVOCs 1.05 0.98 0.18 CO 1.06 Thermal Effluent 2.08 1.89 0.26 Land Use 2.17 2.24 Economy Total Cost 1.93 2.03 2.11 대기오염물질의 외부비용을 반영한다면?

Conclusion Future Research Agenda Modeling result and foreign countries’ cases (Germany, Denmark etc.) show that nuclear phase-out, renewables transition and GHG reduction are technologically possible within domestic RE potential and economically affordable. Stakeholders’ participation and Political will are important. Reducing electricity demand is the most important because it reduces the cost and environmental impact of renewable energy and other plants. It is required to set up a progressive national GHG reduction target (ex. Reducing emission or emission intensity 50% against 2005 by 2050), energy independence target and renewable electricity target by 2050. To set up higher renewable electricity target by 2020 It is required to make a technology roadmap and policy roadmap (feed-in tariff, full pricing etc.)for Energy efficiency and Renewables to realize a Sustainable Society Scenario. Future Research Agenda Extending to energy scenario (including electricity, heat and fuel) Considering demand side management options Considering geological dispatch considering RE potential sites and distance between consumption sites and supply sites using Geological Info. System (GIS) To meet flexible demand stably by hybrid RE, storage and LNG CHP etc. 최적화모형 : LEAP 2011

Thank you very much.