Introduction to Atmospheric Dispersion 2010. 5. 20. 우정헌 신기술융합학과/환경공학과, Konkuk University
Model Theory
Air Quality Governing Equation Dong Young Kim
Steady-State Emissions Power plant plume as it crosses Puget Sound
A particular solution for small areas : Gaussian Plume Model Gaussian Dispersion Models ISC3 (for primary pollutants)
Gaussian Plume Model
Dispersion Coeff.(y-direction)
Dispersion Coeff. (z-direction)
Dispersion Coeff. (fomular) * Martin’s fomular(use Table 4-3)
Joint Frequency Function(JFF) Wind Speed 6 classes(1 ~ 3 MPH, 4 ~ 7 MPH, 8 ~ 12 MPH, 13 ~ 18 MPH, 19 ~ 24 MPH, and greater then 24 MPH Wind Direction 16 dir. (N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW and NNW) Stability 6 classes (A-Extremely unstable, B-Unstable, C- Slightly unstable, D-Neutral, E-Slightly stable, F-Stable)
Exercises Ex 1) 다음과 같은 배출조건을 가진 굴뚝(Stack A)가 있다. SO2 emissions = 350g/s h = 50 m △h = (이전 예제의 Moses & Carson 식 및 조건이용) u0 at 10m = 4m/s Ta at 50m = 0 ℃ Wind direction : E σy, σz -> Table 4-3 이용 가우스모형식을 이용하여 다음의 지점들에 대해 Cso2 (x, 0, 0) 를 구하고(ppb), 이 조건이 하루 종일 지속되었을때 지표농도를 우리나라 대기 환경기준과 비교해보시오. Stability A, C, F x(km):0,1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 Ex 2) Stack A의 남쪽 1km 지점에 배출조건이 똑같은 굴뚝인 Stack B 가 건설 되었다면 위의 지점들에서의 SO2 오염도는 어떻게 변할 것인가?
Thank You!