Download presentation
Presentation is loading. Please wait.
Published bySabrina Benevides Sabala Modified 6년 전
1
Contents 퍼지 개요 및 추론 과정 소개 예 1)날씨와 기분에 관한 예 Wallfollow system
MFC로 구현된 퍼지
2
퍼지란? 인간의 언어 및 사고에 관련된 애매함을 수리적으로 취급이 가능하도록 한 것.
기존 논리학의 명제 중 참, 거짓으로 나타낼 수 없는 것을 수치적으로 표현 ex) 기존 논리와 퍼지 논리의 비교 기존 논리 퍼지 논리 태양은 항성이다. 영훈이는 젊다 2 + 4 = 5 4는 작은 정수 이다. 자동차 바퀴는 둥글다. 형렬이는 키가 크다. 대표적인 3가지 추론법 간략 추론법 Mamdani 추론법 Takagi-Sugeno 추론법 (선형 추론법)
3
Mamdani 과정 규칙 1(R) If x0 is A1 and y0 is B1, then w is C1
.
4
퍼지 논리의 예 1. 비, 기온 을 보고 외출하고 싶은 기분의 정도를 계산해 보자 비가 많이 온다. 기온이 덥다
비, 기온 을 보고 외출하고 싶은 기분의 정도를 계산해 보자 비가 많이 온다. 기온이 덥다 비가 조금 온다. 기온이 적당하다. 비가 안 온다. 기온이 춥다. 입력 조건 출력 조건 외출 하고 싶다, 외출 안 하고 싶다. 과연 외출 할 것인가 말 것인가 비에 관한 조건 3가지 와 기온에 관한 조건 3가지를 함께 비교 한다 조건은 3 X 3 = 9 가지 조건을 비교하여 외출하고 싶은 기분이 정해 진다. -> and than 연산
5
퍼지 연산 1 비가 많이 온다. and 기온이 덥다. than 외출 안 하고 싶다.
비가 많이 오는 정도 RPB 비가 조금 오는 정도 RZ0 비가 안 오는 정도 RNB 외출할 기분. OPB 외출 안 할 기분. ONB 기온이 더운 정도 TPB 기온이 적당한 정도 TZ0 기온이 추운 정도 TNB 비에 관한 조건 RPB RZ0 RNB 기온에 관한 조건 TPB ONB TZ0 OPB TNB
6
예 1. 퍼지 룰 규칙 1(R) If x0 is A1 and y0 is B1, then w is C1
비에 관한 조건 RPB RZ0 RNB 기온에 관한 조건 TPB ONB TZ0 OPB TNB 규칙 1(R) If x0 is A1 and y0 is B1, then w is C1 규칙 2(R) If x0 is A2 and y0 is B2, then w is C2 .
7
예 1. 퍼지 룰
8
예 1. max-min 연산 9개의 룰들에 값을 max-min 연산을 통해 출력부 (후건부)의 퍼지 값을 얻어 낸다.
비퍼지화 단계(무게 중심 법)를 통해 원하는 상수 값 출력
9
예 1. max-min 연산 min 9개 조건들 중 최소 값만 뽑아 낸다.
10
예 1. max-min 연산 9개의 값을 Max연산 무게 중심법을 통해 원하는 값을 얻음
11
예 1. 비퍼지화(defuzzification) – 무게중심법 -
무게중심법식 : ∑ μ(yi)xi y* =────── ∑ μ yi (명) (cm) 키 → ↑ 인원 20 15 10 5 (5*150)+ (15*160)+ (10*170)+ (5*180) 평균 : y* = Y*=
12
예2) Wallfollow system
13
Wallfollow class의 퍼지 제어 특징
예2) 시스템의 계략도 입력 변수 : 각도, 위치 오차 출력 변수 : 조향각 각도 거리 Wallfollow class의 퍼지 제어 특징 전건부 (입력변수) 로봇의 진행뱡향과 거리차 후건부(출력변수) 로봇의 조향각 규칙의 형태 Mamdani 추론 방법 합성 규칙 max-min 합성 비퍼지화 방법 무게 중심법
14
Theta 계산 원리 θ S2 S1 S 벽 θ S1 : 센서 1에서 측정한 거리 값
Θ : 로봇 중심축과 벽과 평행한 가상의 축간의 틀어진 각도 센서 1 센서 2
15
예2) Wallfollow fuzzy 소속 함수1
거리에 따른 퍼지 규칙 각도에 따른 퍼지 규칙 기준선 왼쪽으로 많이 떨어짐(NB) 왼쪽으로 많이 틀어짐(NB) 기준선 왼쪽으로 조금 떨어짐(NS) 왼쪽으로 조금 틀어짐 (NS) 기준선과 일치(Z0) 기준선 오른쪽으로 조금 떨어짐 (PS) 오른쪽으로 조금 틀어짐 (PS) 기준선 오른쪽으로 많이 떨어짐(PB) 오른쪽으로 많이 틀어짐 (PB) 거리 각도에 대한 실수 값(CRISP값)을 퍼지 값으로 변환 각도 NB NS Z0 PS PB 거리 후반부 퍼지 규칙에 의해 조향각을 뽑아 낸다.
16
예2) Wallfollow fuzzy 소속 함수2
각도 NB NS Z0 PS PB 거리 거리가 기준선보다 왼쪽으로 많이 떨어지고(NB) 각도가 왼쪽으로 많이 틀어 졌을 때 (NB) 조향각은 오른쪽으로 크게 회전 (PB) 위와 같은 방법으로 25개의 조건이 만들어짐
17
25개의 퍼지 조건들 1. 거리가 기준선보다 왼쪽으로 많이 떨어지고(NB) 각도가 왼쪽으로 많이 틀어 졌을 때 (NB) -> 조향각은 오른쪽으로 크게 회전 (PB) 2. 거리가 기준선보다 왼쪽으로 많이 떨어지고(NB) 각도가 왼쪽으로 조금 틀어 졌을 때 (NB) -> 조향각은 오른쪽으로 크게 회전 (PB) 3. 거리가 기준선 보다 왼쪽으로 많이 떨어지고(NB) 각도가 기준선과 일치(Z0) -> 조향각은 오른쪽으로 크게 회전 (PS) 4. 거리가 기준선 보다 왼쪽으로 많이 떨어지고(NB) 각도가 오른쪽으로 조금 틀어 졌을 때 (PS) -> 조향각은 없음 (Z0) 5. 거리가 기준선 보다 왼쪽으로 많이 떨어지고(NB) 각도가 오른쪽으로 많이 틀어 졌을 때 (PB) -> 조향각은 없음 (Z0) 6. 거리가 기준선 보다 왼쪽으로 조금 떨어지고(NS) 각도가 왼쪽으로 많이 틀어 졌을 때 (NB) -> 조향각은 오른쪽으로 크게 회전 (PB) 7. 거리가 기준선 보다 왼쪽으로 조금 떨어지고(NS) 각도가 왼쪽으로 많이 틀어 졌을 때 (NS) -> 조향각은 오른쪽으로 조금 회전 (PS) 8.거리가 기준선 보다 왼쪽으로 조금 떨어지고(NS) 각도가 기준선과 일치(Z0) 9. 거리가 기준선 보다 왼쪽으로 조금 떨어지고(NS) 각도가 오른쪽으로 조금 틀어 졌을 때 (PS) 10. 거리가 기준선 보다 왼쪽으로 조금 떨어지고(NS) 각도가 오른쪽으로 많이 틀어 졌을 때 (PB) -> 조향각은 왼쪽으로 조금 회전 (NS) 11.거리가 기준선과 일치(Z0) 각도가 왼쪽으로 많이 틀어 졌을 때 (NB) 12. 거리가 기준선과 일치(Z0) 각도가 왼쪽으로 조금 틀어 졌을 때 (NS) 13. 거리가 기준선과 일치(Z0) 각도가 기준선과 일치 (Z0) ->조향각은 없음 (Z0)
18
25개의 퍼지 조건들 14. 거리가 기준선과 일치(Z0) 각도가 오른쪽으로 조금 틀어 졌을 때 (PS)
-> 조향각은 왼쪽으로 조금 회전 (NS) 15. 거리가 기준선과 일치(Z0) 각도가 오른쪽으로 많이 틀어 졌을 때 (PB) ->조향각은 왼쪽으로 조금 회전 (NS) 16. 거리가 기준선 보다 오른쪽으로 조금 떨어지고(PS) 각도가 왼쪽으로 많이 틀어 졌을 때 (NB) -> 조향각은 오른쪽으로 조금 회전 (PS) 17. 거리가 기준선 보다 오른쪽으로 조금 떨어지고(PS) 각도가 왼쪽으로 조금 틀어 졌을 때 (NS) -> 조향각은 없음 (Z0) 18. 거리가 기준선 보다 오른쪽으로 조금 떨어지고(PS) 각도가 기준선과 일치 (Z0) 19. 거리가 기준선 보다 오른쪽으로 조금 떨어지고(SP) 각도가 오른쪽으로 조금 틀어 졌을 때 (PS) 20. 거리가 기준선 보다 오른쪽으로 조금 떨어지고(PS) 각도가 오른쪽으로 많이 틀어 졌을 때 (PB) -> 조향각은 왼쪽으로 크게 회전 (NB) 21. 거리가 기준선 보다 오른쪽으로 많이 떨어지고(PB) 각도가 왼쪽으로 많이 틀어 졌을 때 (NB) 22. 거리가 기준선 보다 오른쪽으로 많이 떨어지고(PB) 각도가 왼쪽으로 조금 틀어 졌을 때 (NS) 23. 거리가 기준선 보다 오른쪽으로 많이 떨어지고(PB) 각도가 기준선과 일치 (Z0) 24. 거리가 기준선 보다 오른쪽으로 많이 떨어지고(PB) 각도가 오른쪽으로 조금 틀어 졌을 때 (PS) 25. 거리가 기준선 보다 오른쪽으로 많이 떨어지고(PB) 각도가 오른쪽으로 많이 틀어 졌을 때 (PB)
19
Mamdani 추론 법의 개요2
20
Fuzzy Wallfollow 의 입출력부
입력 : 거리에 대한 퍼지 출력 함수 -600~600 입력 : 각도에 대한 퍼지 출력 함수 -20~20 출력 : 각도에 대한 퍼지 출력 함수 -60~60
21
거리 120 각도 12도에 대한 출력을 구해 보자 y1 = 120, NB = 0 y1 = 120, NS = 0 y1 = 120, Z0 = 0.6 y1 = 120, PS = 0.4 y1 = 120, PB = 0 120 y2 = 120, NB = 0 y2 = 120, NS = 0 y2 = 120, Z0 = 0 y2 = 120, PS = 0.8 y2 = 120, PB = 0.2 12
22
NB 와 NS 집합에 소속 되게 되므로 이 두 집단에 소속될 확률을 구하여 보자.
PB = 600 PS = 300 Z0 NS = -300 NB = -600 현재 위치 거리 : 120 각도 : 12◦ NB 와 NS 집합에 소속 되게 되므로 이 두 집단에 소속될 확률을 구하여 보자.
23
예 제
24
JogRate = FuzzyRuleRight(DeltaTheta, first, Reference)
WallFollowRight 함수 구조 WallFollowRight(Reference) JogRate = FuzzyRuleRight(DeltaTheta, first, Reference) 퍼지 연산을 통해 회전각을 구함 Jog(JogRate) 단위: Degrees per sec Sleep SetVelocity Go Mode
Similar presentations