빅토르 바자렐리 3학년 4반 11번 김세연 입니다.저는 바자 렐리에 대하여 조사하였습니다. 3학년 4반 11번 김세연.

Slides:



Advertisements
Similar presentations
1. 도형의 연결 상태 2. 꼭지점과 변으로 이루어진 도형 Ⅷ. 도형의 관찰 도형의 연결상태 연결상태가 같은 도형 단일폐곡선의 성질 연결상태가 같은 입체도형 뫼비우스의 띠.
Advertisements

조사자 : 이준호 담당선생님 : 박문열 선생님. 1. 선정동기 2. 작도란 ? 3. 작도의 규칙과 기본작도 4. 정삼각형과 정사각형의 작도 5. 정오각형의 작도 6. 정오각형 작도 그리기 순서 7. 3 대 작도 불능 문제 8. 결론 9. 느낀점 10. 자료 출처.
406 문서에 표를 작성하고 크기를 조절할 수 있다. 표에 서식을 적용하여 다양하게 표현할 수 있다. 표를 편집하여 다양한 형태로 나타낼 수 있다. 학습목표 5 부. HTML 의 기본 4 장. 표를 이용한 문서작성 - 17 주 차시 : 1/3 ∼ 3/3 배당시간 : 18.
초등용 빛으로 노래해요.
TV 광고의 문제점 7모둠 장기혁 홍원표 김수린 신준화.
풍경 그리기 중등미술교육 충주성심학교 황경섭.
작도에 대하여 조사자 : 이준호 담당선생님 : 박문열 선생님.
하나님의 말씀 죄에 대하여라함은 그들이 나를 믿지 아니함이요 요한복음 16장 9절 말씀 -아멘-
명주실을 이용하여 스트링아트 만들기 ※ 모아진 명주실 탐구동기 및 목적 이론적 배경 탐구의 실제 실험2 - 탐구준비물
팀원 : 권유정, 박진영, 박채은 조교교사 : 김지섭
3D 입체 사진의 원리에 대해 배워보고, 3D입체로봇을 만들어보자
컴퓨터 프로그래밍 : 실습3 2장 데이터와 식.
다니엘과 그의 친구 하나냐, 미사엘, 아사랴는 포로였지만 지혜가 탁월 하여 왕을 섬기기 위해 훈련을 받았다.
무게중심으로 최적의 안정적인 팽이를 찾아라 03김동균, 04김문성, 09박 홍, 10서영우.
(생각열기) 볼록 렌즈로 물체를 관찰할 때는 어떤 상을 볼 수 있는가?
별의 밝기와 거리[2] 밝다고 가까운 별은 아니야! 빛의 밝기와 거리와의 관계 별의 밝기 결정.
(생각열기) 옷가게에서 옷을 살 때와 옥가게 밖으로 나와 서 옷을 볼 때 옷 색이 달라져 보이는 이유는?
2. 다양한 관점.
소마큐브로 3*3*3(정육면체)만드는 방법 탐구하기
악은 어떤 모양이라도 버리라 데살로니가전서 5장 22절 말씀 -아멘-.
마인드 맵.
LIT-GenAppSetup ※ Texting+ 클라이언트 프로그램은 제품 인증을 받은 제품입니다.
포스트잇으로 노란 나비 만들기.
중국 조선업의 몰락 경영학과 윤동현.
27강 JAVA Collections - II - Map계열 컬렉션 클래스 살펴보기 - Set계열 컬렉션 클래스 살펴보기
프랙탈 넌 누구냐?! 한림초등학교 수학’과학영재 현승환.
먹이종류에 다른 구피의 성장변화.
20장. 객체지향 프로그래밍 01_ 객체지향 프로그래밍의 시작.
정다면체, 다면체와 정다각형, 다각형의 관계 한림초등 학교 영제 6학년 5반 송명훈.
1. 탐구동기 - 영재 수업에서 테셀레이션을 배운 적이 있는데 테셀레 이션에 대해 더 자세히 알아보고 싶고, 나만의 테셀레이 션을 만들어 보고 싶어서 이 주제를 선정하게 되었다. 2. 탐구기간 년 12월 5일 ~ 2013년 1월 1일.
테셀레이션(tessellation) 테셀레이션(tessellation) 이란 마루나 욕실 바닥에 깔려 있는 타일처럼 어떠한 틈이나 포개짐이 없이 평면이나 공간을 도형으로 완벽하게 덮는 것을 말한다.
P 등속 직선 운동 생각열기 – 자동차를 타고 고속도로를 달릴 때, 속력계 바늘이 일정한 눈금을 가리키며 움직이지 않을 때가 있다. 이 때 자동차의 속력은 어떠할까? ( 속력이 일정하다 .)
삼각형에서 평행선에 의하여 생기는 선분의 길이의 비
생활 속의 밀도 (1) 뜨고 싶니? 내게 연락해 ! 물질의 뜨고 가라앉음 여러 가지 물질의 밀도.
우리나라 수학자 기초반-17번-이호준.
3주차 오늘은 2주차에 만든 모형의 문제점이 뭘까 생각하면서 더 멀리 날아갈수 있게
미 술 6 학년 3. 다양한 표현 (1~2/6) 초기화면 다양한 표현 방법 알아보기.
표지 수학8-나 2학년 2학기  Ⅲ.도형의 닮음 (4) 삼각형의 중점연결정리 (13/21) 삼각형의 중점연결정리.
수학10-나 1학년 2학기 Ⅱ.부등식의 영역 1. 부등식의 영역(2/5) 부등식 영역 수업계획 수업활동.
(생각열기) 축구장의 전광판에 사용되는 LED에서 나오 는 빛의 3원색은 무엇인가?
이 하나님은 영원히 우리 하나님이시니 그가 우리를 죽을 때까지 인도하시리로다 시편 48편 14절 말씀 -아멘-
종이비행기가 잘 날기 위한 조건 만든이:김윤성.
물리 현상의 원리 TIME MACHINE.
시각절벽실험 김현우.
바넘효과 [Barnum effect] 사람들이 보편적으로 가지고 있는 성격이나 심리적 특징을 자신만의 특성으로 여기는 심리적 경향. 19세기 말 곡예단에서 사람들의 성격과 특징 등을 알아 내는 일을 하던 바넘(P.T. Barnum)에서 유래하였다. 1940년대 말 심리학자인.
과학 1 학년 6. 생물의 구성 3)조직과 기관 (7/7) 물 속의 작은 생물 관찰 수업계획 수업활동.
Chapter 1 단위, 물리량, 벡터.
프렉탈 도형의 신비 양일중학교 2학년 김대현, 노동민.
세상에서 가장 가벼운 의자 만들기 6-3 현승규 지도교사: 김윤수.
행성을 움직이는 힘은 무엇일까?(2) 만유인력과 구심력 만유인력과 케플러 제3법칙.
그러므로 형제들아 내가 하나님의 모든 자비하심으로 너희를 권하노니 너희 몸을 하나님이 기뻐하시는 거룩한 산 제물로 드리라
종이의 종류의 따른 물 흡수량 수원초등학교 6학년 이형민.
유체 속에서 움직이는 것들의 발전 진행하는 추진력에 따라 압력 차이에 의한 저항력을 가지게 된다. 그런데, 앞에서 받는 저항보다 뒤에서 받는 저항(흡인력)이 훨씬 더 크다. 유체 속에서 움직이는 것들은 흡인에 의한 저항력의 최소화를 위한 발전을 거듭한다. 그것들은, 유선형(Streamlined.
Orderly Triangle 수학 산출물 김 경 미.
문장제 쉽게 풀기 -최소공배수 응용 문제.
Ⅳ. 제도의 기초 1. 물체를 나타내는 방법 3) 물체의 표현 방법 (2) 입체도법 지도학급 : 태화중학교 1학년 4반
정다면체와 정다각형의 관계 한림초등 학교 영제 6학년 5반 송명훈.
정삼각형을 정사각형으로 바꾸는 원리 탐구 하귀초등학교 6학년 고지상.
미 술 5 학년 4.이야기 세상 (5-6/6) 초기화면 마술 그림을 그리고 작품 감상하기.
무엇이 닮았나요? !!.
전남중등미술교육연구회 나주반남중학교 맹 범 호
눈의 구조와 기능(1) 사람이 천냥이면 눈이 팔백냥이다. 눈의 구조와 기능 시각의 전달 경로.
학 습 목 표 1. 밑그림에 따라 채색할 수 있다. 2. 전체적인 색의 분위기와 조화를 생각할 수 있다.
와인잔 연주 양동 중학교 2학년 김다희 류보라.
제주북초등학교 영재 심화반 : 이준호 지도교사 : 양성준 선생님
옵아트를 활용한 착시미술 교사 김유미.
전류의 세기와 거리에 따른 도선 주변 자기장 세기 변화에 대한 실험적 고찰
제주북초등학교 영재 기초반 김학선 지도교사:박문열선생님
프랙탈 넌 누구냐?! 한림초등학교 수학’과학영재 현승환.
피보나치수열에 대하여 한림초 5학년 신동오.
Presentation transcript:

빅토르 바자렐리 3학년 4반 11번 김세연 입니다.저는 바자 렐리에 대하여 조사하였습니다. 3학년 4반 11번 김세연

그는 누구인가? 빅토르 바자 렐리 (1908년~1997년) 1908년4월 9일 헝가리 출생 빅토르 바자 렐리 (1908년~1997년) 1908년4월 9일 헝가리 출생 옵아트(Op Art)의 대표적인 화가 바자렐리는 1908년 헝가리에서 태어났으며, 옵 아트의 대표적인 화가 입니다. 그는 어렸을 때부터 격자무늬의 선이 겹쳐지면서 짜여진 천과 그것을 통해 볼 수 있는 재질감에 매료되었다고 합니다. 언젠가 그는 태양을 그린 적이 있는데 먼저 이중으로 창문을 그린 후 그 창문 안에 얼굴을 찡그리고 있는 두 개의 둥근 태양의 일부분이 겹쳐지게 그렸다고 합니다. 아마도 이때부터 그러한 방법으로 겹쳐진 투명한 그림에 대한 그의 구상이 싹텄을 것입니다. 그 후 그가 병상에 있을 때도 그는 가제 붕대의 실 올을 빼내곤 하였는데 그는 여기서 실 올을 다양하게 뽑아 내는 가운데 가제가 겹쳐지면서 생기는 여러 가지 무늬에 매력을 느꼈다고 합니다. 이렇듯 그의 예술적인 감각은 휴식에서부터 시작 되었다고 합니다. 그의 그림은 서로 반대되는 원근법 체계와 극도로 대조되는 색채를 사용하여 착시효과를 연출하고 운동감을 주었습니다. 그 결과, 그의 그림의 형태들은 마치 움직이는 것처럼 보이게 됐습니다. 또한, 바자 렐리는 옵 아트에만 국한된 화가가 아니었는데도, 그 어느 누구도 바자 렐리 보다 옵 아트에 관하여 더 감동적으로 언급하진 못하였다고 합니다. 출처-옵 아트/지은이:시릴 바레트/출판사:미진사

십자성 -마치 물리학 교과서에서 나오는 휘어진 공간을 보여준다. 오른쪽 상단에서는 모든 것을 빨아 들이는 블랙홀과 같은 강한 흡인력과 깊이 감을 느낄 수 있다. 이 작품은 십자성이란 작품입니다. 작품을 보면, 마치 물리 학 교과서에서 나오는 휘어진 공간을 보여 주는 것 같습니다. 오른쪽 상단에서는 모든 것을 빨아 들이는 블랙홀과 같은 강한 흡인력과 깊이 감을 느낄 수 있습니다. 이 작품을 보면서 받는 모든 느낌은 평면 위에 정지해 있는 검고 흰 선들이 만들어낸 것입니다. 신기한 것은 이 작품을 가까이 봤다, 멀리 봤다 를 반복하면 작품이 움직이는 것을 관찰 할 수 있습니다. 출처-뇌,아름다움을 말하다.지은이:지상현/출판사:해나무

오리온성좌(MC) -배경 색상에 따라 각기 다른 강도를 나타내는 색종이를 잘라 붙인 작품이다. 이 작품은 난색과 한색의 배열 방식에 따라 각 부분은 감상자로부터 가까이 다가오는 느낌을 준다. 다음은 오리온 성좌라는 작품입니다. 이 작품은 배경 색상에 따라 각기 다른 강도를 나타내는 색종이를 잘라 붙인 작품입니다. 난색과 한색의 배열 방식에 따라 각 부분은 감상자로부터 가까이 다가오는 듯한 느낌을 줍니다. 그리고 사각형의 명도 차이를 고려해 배치한 원과 타원과의 변화는 화면 전체가 진동하는 것과 같은 효과를 나타내기도 합니다. 출처-새로운 미술의 이해/지은이:라투스/출판사:Thomson

직녀성 -사각형을 형성하는 선을 구부러뜨려 거대한 서양식 장기판과도 같다. 그러나 선의 구부러뜨림은 그림 전체와 관련하여 아주 정교하게 계산되어 있다. 그의 대표작인 직녀성은 사각형을 형성하는 선을 구부러뜨려 거대한 서양식 장기판과도 비슷합니다. 선의 구부러뜨림은 그림 전체와 관련하여 아주 정교하게 계산되어 있고, 신기하게도 각각의 사각형은 수축과 팽창의 착각을 불러일으키도록 그 크기를 조절하여 가장 큰 사각형은 가장 작은 사각형의 10배가 넘습니다. 마치 볼록렌즈로 확대한 것 같은 느낌도 듭니다. 출처-옵아트/지은이:시릴 바레트/출판사:미진사

얼룩말 -1935년 부터 흑백의 모호한 환영적 공간을 연구할 때, 주제로 사용 하였던 것이 바로 얼룩말이었다. 직선으로 부터 변형된 물결 무늬, 줄무늬 도형으로 형태와 배경 사이의 모호성. 바자 렐리가 1935년부터 흑백에 모호한 환영적 공간을 연구할 때, 주제로 사용하였던 것이 얼룩말이었는데, 그래서 탄생하게 된 작품입니다. 이 작품에선, 직선으로부터 변형된 물결 무늬, 줄무늬 도형으로 형태와 배경 사이의 모호성과 함께 시각적인 착시현상을 관찰할 수 있습니다. 모호한 환영적 공간: 눈 앞에 없는 것이 있는 것처럼 보이는 공간 모호성: 여러 뜻이 뒤섞여 있어서 정확하게 무엇을 나타내는지 알기 어려운 말의 성질 출처-20세기 미술사/지은이:김현하/출판사:한길아트

그 외 작품들 ◀광대 ▼Tigers 그 외의 작품에는 어지러운 무늬 속에서 한 발을 들고 있는 광대의 모습을 찾을 수 있는 광대라는 작품과, 호랑이 두 마리가 서로를 견제하는 모습을 찾을 수 있는 Tigers 라는 작품이 있습니다.

나의견해 이번 미술 발표는 지난 번과 달리 많이 어려웠던 것 같다. 바자 렐리에 대한 자료가 많이 없어서 걱정을 많이 했는데, 그래도 이렇게 무사히 발표를 끝내서 다행이다. 이번 발표를 통해서 생소한 옵 아트에 대하여 많이 알게 되어서 좋았고, 바자 렐리의 작품이 신기하고, 인상 깊어서 기억에 많이 남을 것 같다는 생각이 들었다. 나중에 색종이 같은 걸로 바자 렐리의 작품을 한번 만들어 보는 시도도 해봐야 겠다. 이번 미술 발표는 지난 번과 달리 많이 어려웠던 것 같다. 바자 렐리에 대한 자료가 많이 없어서 걱정을 많이 했는데, 그래도 이렇게 무사히 발표를 끝내서 다행인 것 같다. 이번 발표를 통해서 생소한 옵 아트에 대하여 많이 알게 되어서 좋았고, 바자 렐리의 작품이 신기하고, 인상 깊어서 기억에 많이 남을 것 같다는 생각이 들었다. 나중에 색종이 같은 걸로 바자 렐리의 작품을 한번 만들어 보는 시도도 해봐야 겠다.